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1. Introduction

∙ Consider the case with a corner at zero and a continuous distribution

for strictly positive values.

∙ Note that there is only one response here, y, and it is always observed.

The value zero is not arbitrary; it is observed data (labor supply,

charitable contributions).

∙ Often see discussions of the “selection” problem with corner solution

outcomes, but this is usually not appropriate.
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∙ Example: Family charitable contributions. A zero is a zero, and then

we see a range of positive values. We want to choose sensible, flexible

models for such a variable.

∙ Often define w as the binary variable equal to one if y  0, zero if

y  0. w is a deterministic function of y. We cannot think of a

counterfactual for y in the two different states. (“How much would the

family contribute to charity if it contributes nothing to charity?” “How

much would a woman work if she is out of the workforce?”)
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∙ Contrast previous examples with sound counterfactuals: How much

would a worker in if he/she participates in job training versus when

he/she does not? What is a student’s test score if he/she attends

Catholic school compared with if he/she does not?

∙ The statistical structure of a particular two-part model, and the

Heckman selection model, are very similar.
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∙Why should we move beyond Tobit? It can be too restrictive because

a single mechanism governs the “participation decision” (y  0 versus

y  0) and the “amount decision” (how much y is if it is positive).

∙ Recall that, in a Tobit model, for a continuous variable xj, the partial

effects on Py  0|x and Ey|x,y  0 have the same signs (different

multiples of j. So, it is impossible for xj to have a positive effect on

Py  0|x and a negative effect on Ey|x,y  0. A similar comment

holds for discrete covariates.
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∙ Furthermore, for continuous variables xj and xh,

∂Py  0|x/∂xj

∂Py  0|x/∂xh


j
h


∂Ey|x,y  0/∂xj

∂Ey|x,y  0/∂xh

∙ So, if xj has twice the effect as xh on the participation decision, xj

must have twice the effect on the amount decision, too.

∙ Two-part models allow different mechanisms for the participation and

amount decisions. Often, the economic argument centers around fixed

costs from participating in an activity. (For example, labor supply.)
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2. A General Formulation

∙ Useful to have a general way to think about two-part models without

specif distributions. Let w be a binary variable that determines whether

y is zero or strictly positive. Let y∗ be a nonnegative, continuous

random variable. Assume y is generated as

y  w  y∗.

∙ Other than w being binary and y∗ being continuous, there is another

important difference between w and y∗: we effectively observe w

because w is observationally equivalent to the indicator 1y  0

(Py∗  0). But y∗ is only observed when w  1, in which case

y∗  y.
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∙ Generally, we might want to allow w and y∗ to be dependent, but that

is not as easy as it seems. A useful assumption is that w and y∗ are

independent conditional on explanatory variables x, which we can write

as

Dy∗|w,x  Dy∗|x.

∙ This assumption typically underlies two-part or hurdle models.

∙ One implication is that the expected value of y conditional on x and w

is easy to obtain:

Ey|x,w  w  Ey∗|x,w  w  Ey∗|x.
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∙ Sufficient is conditional mean independence,

Ey∗|x,w  Ey∗|x.

∙When w  1, we can write

Ey|x,y  0  Ey∗|x,

so that the so-called “conditional” expectation of y (where we condition

on y  0) is just the expected value of y∗ (conditional on x).

∙ The so-called “unconditional” expectation is

Ey|x  Ew|xEy∗|x  Pw  1|xEy∗|x.
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∙ A different class of models explicitly allows correlation between the

participation and amount decisions Unfortunately, called a selection

model. Has led to considerable conclusion for corner solution

responses.

∙Must keep in mind that we only observe one variable, y (along with

x. In true sample selection environments, the outcome of the selection

variable (w in the current notation) does not logically restrict the

outcome of the response variable. Here, w  0 rules out y  0.

∙ In the end, we are trying to get flexible models for Dy|x.
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3. Truncated Normal Hurdle Model

∙ Cragg (1971) proposed a natural two-part extension of the type I

Tobit model. The conditional independence assumption is assumed to

hold, and the binary variable w is assumed to follow a probit model:

Pw  1|x  x.

∙ Further, y∗ is assumed to have a truncated normal distribution with

parameters that vary freely from those in the probit. Can write

y∗  x  u

where u given x has a truncated normal distribution with lower

truncation point −x.
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∙ Because y  y∗ when y  0, we can write the truncated normal

assumption in terms of the density of y given y  0 (and x):

fy|x,y  0  x/−1y − x//, y  0,

where the term x/−1 ensures that the density integrates to unity

over y  0.

∙ The density of y given x can be written succinctly as

fy|x  1 − x1y0xx/−1y − x//1y0,

where we must multiply fy|x,y  0 by Py  0|x  x.
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∙ Called the truncated normal hurdle (THN) model. Cragg (1971)

directly specified the density.

∙ Nice feature of the TNH model: it reduces to the type I Tobit model

when   /.

∙ The log-likelihood function for a random draw i is

li  1yi  0 log1 − xi  1yi  0 logxi

 1yi  0− logxi/  logyi − xi/ − log.

Because the parameters , , and  are allowed to freely vary, the MLE

for , ̂, is simply the probit estimator from probit of wi ≡ 1yi  0 on

xi. The MLEs of  and  (or  and 2 are the MLEs from a truncated

normal regression.
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∙ The conditional expectation has the same form as the Type I Tobit

because Dy|x,y  0 is identical in the two models:

Ey|x,y  0  x  x/.

∙ In particular, the effect of xj has the same sign as j (for continous or

discrete changes).

∙ But now, the relative effect of two continuous variables on the

participation probabilities,  j/h, can be completely different from

j/h, the ratio of partial effects on Ey|x,y  0.
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∙ The unconditional expectation for the Cragg model is

Ey|x  xx  x/.

The partial effects no longer have a simple form, but they are not too

difficult to compute:

∂Ey|x
∂xj

  jxx  x/  xjx/,

where z  1 − zz  z.

∙ Note that

logEy|x  logx  logEy|x,y  0.
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∙ The semi-elasticity with respect to xj is 100 times

 jx  jx//x  x/

∙ If xj  logzj, then the above expression is the elasticity of Ey|x

with respect to zj.

∙We can insert the MLEs into any of the equations and average across

xi to obtain an average partial effect, average semi-elastisticity, or

average elasticity. As in many nonlinear contexts, the bootstrap is a

convienent method for obtaining valid standard errors.

∙ Can get goodness-of-fit measures as before. For example, the squared

correlation between yi and Êyi|xi  xi̂xi̂  ̂xi̂/̂.

16



4. Lognormal Hurdle Model

∙ Cragg (1971) also suggested the lognormal distribution conditional on

a positive outcome. One way to express y is

y  w  y∗  1x  v  0expx  u,

where u,v is independent of x with a bivariate normal distribution;

further, u and v are independent.

∙ y∗ has a lognormal distribution because

y∗  expx  u
u|x~Normal0,2.

Called the lognormal hurdle (LH) model.
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∙ The expected value conditional on y  0 is

Ey|x,y  0  Ey∗|x,w  1  Ey∗|x  expx  2/2.

∙ The semi-elasticity of Ey|x,y  0 with respect to xj is 100j. If

xj  logzj, j is the elasticity of Ey|x,y  0 with respect to zj.

∙ The “unconditional” expectation is

Ey|x  xexpx  2/2.

∙ The semi-elasticity of Ey|x with respect to xj is simply (100 times)

 jx  j where  is the inverse Mills ratio. If xj  logzj, this

expression becomes the elasticity of Ey|x with respect to zj.
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∙ Estimation of the parameters is particularly straightforward. The

density conditional on x is

fy|x  1 − x1y0xlogy − x//y1y0,

which leads to the log-likelihood function for a random draw:

li  1yi  0 log1 − xi  1yi  0 logxi

 1yi  0loglogyi − xi/ − log − logyi.

∙ As with the truncated normal hurdle model, estimation of the

parameters can proceed in two steps. The first is probit of wi on xi to

estimate , and then  is estimated using an OLS regression of logyi

on xi for observations with yi  0.
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∙ The usual error variance estimator (or without the degrees-of-freedom

adjustment), ̂2, is consistent for 2.

∙ In computing the log likelihood to compare fit across models, must

include the terms logyi. In particular, for comparing with the TNH

model.

∙ Can relax the lognormality assumption if we are satisfied with

estimates of Py  0|x, Ey|x,y  0, and Ey|xare easy to obtain.
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∙ Nevertheless, if we are mainly interested in these three features of

Dy|x, we can get by with weaker assumptions. If in y∗  expx  u

we assume that u is independent of x, can use Duan’s (1983) smearing

estimate.

∙ Uses Ey∗|x  Eexpu expx ≡ expx where  ≡ Eexpu.

∙ Let ûi be OLS residuals from logyi on xi using the yi  0 data. Let

̂  N−1∑
i1

N

expûi.

Then, Êy|x,y  0  ̂expx̂, where ̂ is the OLS estimator of

logyi on xi using the yi  0 subsample.
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∙More direct approach: just specify

Ey|x,y  0  expx,

which contains y∗  expx  u, with u independent of x, as a special

case.

∙ Use nonlinear least squares or a quasi-MLE in the linear exponential

family (such as the Poisson or gamma).

∙ Given probit estimates of Py  0|x  x and QMLE estimates

of Ey|x,y  0  expx, can easily estimate Ey|x  xexpx

without additional distributional assumptions.
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5. Exponential Type II Tobit Model

∙ Now allow w and y∗ to be dependent after conditioning on observed

covariates, x. Seems natural – for example, unobserved factors that

affect labor force participation can affect amount of hours.

∙ Can modify the lognormal hurdle model to allow conditional

correlation between w and y∗. Call the resulting model the exponential

type II Tobit (ET2T) model.

∙ Traditionally, the type II Tobit model has been applied to missing

data problems – that is, where we truly have a sample selection issue.

Here, we use it as a way to obtain a flexible corner solution model.
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∙ As with the lognormal hurdle model,

y  1x  v  0expx  u

We use the qualifier “exponential” to emphasize that we should have

y∗  expx  u.

∙ Later we will see why it makes no sense to have y∗  x  u, as is

often the case in the study of type II Tobit models of sample selection.

∙ Because v has variance equal to one, Covu,v  , where  is the

correlation between u and v and 2  Varu.
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∙ Obtaining the log likelihood in this case is a bit tricky. Let

m∗  logy∗, so that Dm∗|x is Normalx,2. Then

logy  m∗when y  0. We still have Py  0|x  1 − x.

∙ To obtain the density of y (conditional on x) over strictly positive

values, we find fy|x,y  0 and multiply it by Py  0|x  x.

∙ To find fy|x,y  0, we use the change-of-variables formula

fy|x,y  0  glogy|x,y  0/y, where g|x,y  0 is the density of

m∗ conditional on y  0 (and x).
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∙ Use Bayes’ rule to write

gm∗|x,w  1  Pw  1|m∗,xhm∗|x/Pw  1|x where hm∗|x is

the density of m∗ given x. Then,

Pw  1|xgm∗|x,w  1  Pw  1|m∗,xhm∗|x.

∙Write w  1x  v  0  1x  /u  e  0, where

v  /u  e and e|x,u~Normal0, 1 − 2. Because u  m∗ − x,

we have Pw  1|m∗,x  x  /m∗ − x1 − 2−1/2.
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∙ Further, we have assumed that hm∗|x is Normalx,2. Therefore,

the density of y given x over strictly positive y is

fy|x  x  /y − x1 − 2−1/2logy − x//y.

∙ Combining this expression with the density at y  0 gives the log

likelihood as

li  1yi  0 log1 − xi

 1yi  0logxi  /logyi − xi1 − 2−1/2

 loglogyi − xi/ − log − logyi.
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∙Many econometrics packages have this estimator programmed,

although the emphasis is on sample selection problems. To use

Heckman sample selection software, one defines logyi as the variable

where the data are “missing” when yi  0) When   0, we obtain the

log likelihood for the lognormal hurdle model from the previous

subsection.
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∙ For a true missing data problem, the last term in the log likelihood,

logyi, is not included. That is because in sample selection problems

the log-likelihood function is only a partial log likelihood. Inclusion of

logyi does not affect the estimation problem, but it does affect the

value of the log-likelihood function, which is needed to compare across

different models.)
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∙ The ET2T model contains the conditional lognormal model from the

previous subsection. But the ET2T model with unknown  can be

poorly identified if the set of explanatory variables that appears in

y∗  expx  u is the same as the variables in w  1x  v  0.

∙ Various ways to see the potential problem. Can show that

Elogy|x,y  0  x  x

where  is the inverse Mills ratio and   .
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∙We know we can estimate  by probit, so this equation nominally

identifies  and . But identification is possible only because  is a

nonlinear function, but  is roughly linear over much of its range.

∙ The formula for Elogy|x,y  0 suggests a two-step procedure,

usually called Heckman’s method or Heckit. First, ̂ from probit of wi

on xi. Second, ̂ and ̂ are obtained from OLS of logyi on xi, xi̂

using only observations with yi  0.
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∙ The correlation between ̂i can often be very large, resulting in

imprecise estimates of  and .

∙ Can be shown that the unconditional expectation is

Ey|x  x  expx  2/2,

which is exactly of the same form as in the LH model (with   0

except for the presence of   . Because x always should include a

constant,  is not separately identified by Ey|x (and neither is 2/2).
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∙ If we based identification entirely on Ey|x, there would be no

difference between the lognormal hurdle model and the ET2T model

when the same set of regressors appears in the participation and amount

equations.

∙ Still, the parameters are technically identified, and so we can always

try to estimate the full model with the same vector x appearing in the

participation and amount equations.
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∙ The ET2T model is more convincing when the covariates determining

the participation decision strictly contain those affecting the amount

decision. Then, the model can be expressed as

y  1x  v ≥ 0  expx11  u,

where both x and x1 contain unity as their first elements but x1 is a

strict subset of x. If we write x  x1,x2, then we are assuming

2 ≠ 0.

∙ Given at least one exclusion restriction, we can see from

Elogy|x,y  0  x11  x that 1 and  are better identified

because x is not an exact function of x1.
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∙ Exclusion restrictions can be hard to come by. Need something

affecting the fixed cost of participating but not affecting the amount.

∙ Cannot use y rather than logy in the amount equation. In the TNH

model, the truncated normal distribution of u at the value −x ensures

that y∗  x  u  0.

∙ If we apply the type II Tobit model directly to y, we must assume

u,v is bivariate normal and independent of x. What we gain is that u

and v can be correlated, but this comes at the cost of not specifying a

proper density because the T2T model allows negative outcomes on y.

35



∙ If we apply the “selection” model to y we would have

Ey|x,y  0  x  x.

∙ Possible to get negative values for Ey|x,y  0, especially when

  0. It only makes sense to apply the T2T model to logy in the

context of two-part models.

∙ Example of Two-Part Models: Married Women’s Labor Supply
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(1) (2) (3)
Model Truncated Normal Lognormal Exponential

Hurdle Hurdle Type II Tobit
Participation Equation
nwifeinc −. 012 . 005 −. 012 . 005 −. 0097 . 0043
educ . 131 . 025 . 131 . 025 . 120 . 022
exper . 123 . 019 . 123 . 019 . 083 . 017
exper2 −. 0019 . 0006 −. 0019 . 0006 −. 0013 . 0005
age −. 088 . 015 −. 088 . 015 −. 033 . 008
kidslt6 −. 868 . 119 −. 868 . 119 −. 504 . 107
kidsge6 .036 . 043 . 036 . 043 . 070 . 039
constant . 270 . 509 . 270 . 509 −. 367 . 448
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(1) (2) (3)
Model Truncated Normal Lognormal Exponential

Hurdle Hurdle Type II Tobit
Amount Equation hours loghours loghours
nwifeinc . 153 5.164 −. 0020 . 0044 .0067 . 0050
educ −29.85 22.84 −. 039 . 020 −. 119 . 024
exper 72.62 21.24 . 073 . 018 −. 033 . 020
exper2 −. 944 . 609 −. 0012 . 0005 . 0006 . 0006
age −27.44 8.29 −. 024 . 007 . 014 . 008
kidslt6 −484.91 153.79 −. 585 . 119 . 208 . 134
kidsge6 −102.66 43.54 −. 069 . 037 −. 092 . 043
constant 2, 123.5 483.3 7.90 . 43 8.67 . 50
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(1) (2) (3)
Model Truncated Normal Lognormal Exponential

Hurdle Hurdle Type II Tobit
̂ 850.77 43.80 . 884 . 030 1.209 . 051
̂ — — −. 972 . 010

Log Likelihood −3,791.95 −3,894.93 −3,877.88
Number of Women 753 753 753
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. * use mroz

. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Probit regression Number of obs  753
LR chi2(7)  227.
Prob  chi2  0.0000

Log likelihood  -401.30219 Pseudo R2  0.2206

----------------------------------------------------------------------------
inlf | Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378

educ | .1309047 .0252542 5.18 0.000 .0814074 .180402
exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311

expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111
age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376

kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029
kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179

_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901
----------------------------------------------------------------------------
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. truncreg hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
(note: 325 obs. truncated)

Truncated regression
Limit: lower  0 Number of obs  428

upper  inf Wald chi2(7)  59.
Log likelihood  -3390.6476 Prob  chi2  0.0000

----------------------------------------------------------------------------
hours | Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
nwifeinc | .1534399 5.164279 0.03 0.976 -9.968361 10.27524

educ | -29.85254 22.83935 -1.31 0.191 -74.61684 14.91176
exper | 72.62273 21.23628 3.42 0.001 31.00039 114.2451

expersq | -.9439967 .6090283 -1.55 0.121 -2.13767 .2496769
age | -27.44381 8.293458 -3.31 0.001 -43.69869 -11.18893

kidslt6 | -484.7109 153.7881 -3.15 0.002 -786.13 -183.2918
kidsge6 | -102.6574 43.54347 -2.36 0.018 -188.0011 -17.31379

_cons | 2123.516 483.2649 4.39 0.000 1176.334 3070.697
---------------------------------------------------------------------------

/sigma | 850.766 43.80097 19.42 0.000 764.9177 936.6143
----------------------------------------------------------------------------

. * log likelihood for Cragg truncated normal hurdle model

. di -3390.6476 - 401.30219
-3791.9498

. * A trick to get the log likelihood for the lognormal hurdle model:
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. tobit lhours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)

Tobit regression Number of obs  428
LR chi2(7)  77.
Prob  chi2  0.0000

Log likelihood  -554.56647 Pseudo R2  0.0653

----------------------------------------------------------------------------
lhours | Coef. Std. Err. t P|t| [95% Conf. Interval

---------------------------------------------------------------------------
nwifeinc | -.0019676 .0044019 -0.45 0.655 -.01062 .0066848

educ | -.0385626 .02002 -1.93 0.055 -.0779142 .0007891
exper | .073237 .0177323 4.13 0.000 .0383821 .1080919

expersq | -.001233 .0005328 -2.31 0.021 -.0022803 -.0001858
age | -.0236706 .0071799 -3.30 0.001 -.0377836 -.0095576

kidslt6 | -.585202 .1174928 -4.98 0.000 -.8161477 -.3542563
kidsge6 | -.0694175 .0369849 -1.88 0.061 -.1421156 .0032806

_cons | 7.896267 .4220778 18.71 0.000 7.066625 8.72591
---------------------------------------------------------------------------

/sigma | .884067 .0302167 .8246725 .9434614
----------------------------------------------------------------------------

Obs. summary: 0 left-censored observations
428 uncensored observations

0 right-censored observations
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. * log likelihood for lognormal hurdle:

. sum lhours

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

lhours | 428 6.86696 .9689285 2.484907 8.507143

. di -401.30219 - 554.56647 - 428*6.86696
-3894.9275

. * Now get the llf for each nonzero observation to compute the Vuong

. * test for the truncated normal versus lognormal.

. predict xb1
(option xb assumed; fitted values)

. gen llf1  log(normalden((lhours - xb1)/.88407)) - log(.88407) - lhours
(325 missing values generated)
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. truncreg hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
(note: 325 obs. truncated)

Truncated regression
Limit: lower  0 Number of obs  428

upper  inf Wald chi2(7)  59.
Log likelihood  -3390.6476 Prob  chi2  0.0000

----------------------------------------------------------------------------
hours | Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
nwifeinc | .1534399 5.164279 0.03 0.976 -9.968361 10.27524

educ | -29.85254 22.83935 -1.31 0.191 -74.61684 14.91176
exper | 72.62273 21.23628 3.42 0.001 31.00039 114.2451

expersq | -.9439967 .6090283 -1.55 0.121 -2.13767 .2496769
age | -27.44381 8.293458 -3.31 0.001 -43.69869 -11.18893

kidslt6 | -484.7109 153.7881 -3.15 0.002 -786.13 -183.2918
kidsge6 | -102.6574 43.54347 -2.36 0.018 -188.0011 -17.31379

_cons | 2123.516 483.2649 4.39 0.000 1176.334 3070.697
---------------------------------------------------------------------------

/sigma | 850.766 43.80097 19.42 0.000 764.9177 936.6143
----------------------------------------------------------------------------
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. predict xb2, xb

. gen u2  hours - xb2

. gen llf2  log(normalden(u2/ 850.766 )) - log( 850.766 )
- log(normal(xb2/ 850.766))

. replace llf2  . if hours  0
(325 real changes made, 325 to missing)

. gen diff  llf2 - llf1
(325 missing values generated)
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. reg diff

Source | SS df MS Number of obs  428
------------------------------------------- F( 0, 427)  0.

Model | 0 0 . Prob  F 
Residual | 203.969251 427 .477679746 R-squared  0.0000

------------------------------------------- Adj R-squared  0.0000
Total | 203.969251 427 .477679746 Root MSE  .69114

----------------------------------------------------------------------------
diff | Coef. Std. Err. t P|t| [95% Conf. Interval

---------------------------------------------------------------------------
_cons | .2406023 .0334077 7.20 0.000 .1749383 .3062663

----------------------------------------------------------------------------

. * The Vuong test strongly rejects the lognormal in favor of the truncated

. * in terms of fit.
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. heckman lhours nwifeinc educ exper expersq age kidslt6 kidsge6,
select(inlf  nwifeinc educ exper expersq age kidslt6 kidsge6)

Iteration 0: log likelihood  -956.85771
Iteration 1: log likelihood  -952.20425
Iteration 2: log likelihood  -940.24444
Iteration 3: log likelihood  -938.83566
Iteration 4: log likelihood  -938.82081
Iteration 5: log likelihood  -938.8208

Heckman selection model Number of obs  753
(regression model with sample selection) Censored obs  325

Uncensored obs  428

Wald chi2(7)  35.
Log likelihood  -938.8208 Prob  chi2  0.0000

----------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
lhours |

nwifeinc | .0066597 .0050147 1.33 0.184 -.0031689 .0164882
educ | -.1193085 .0242235 -4.93 0.000 -.1667858 -.0718313

exper | -.0334099 .0204429 -1.63 0.102 -.0734773 .0066574
expersq | .0006032 .0006178 0.98 0.329 -.0006077 .0018141

age | .0142754 .0084906 1.68 0.093 -.0023659 .0309167
kidslt6 | .2080079 .1338148 1.55 0.120 -.0542643 .4702801
kidsge6 | -.0920299 .0433138 -2.12 0.034 -.1769235 -.0071364

_cons | 8.670736 .498793 17.38 0.000 7.69312 9.648352
---------------------------------------------------------------------------
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inlf |
nwifeinc | -.0096823 .0043273 -2.24 0.025 -.0181637 -.001201

educ | .119528 .0217542 5.49 0.000 .0768906 .1621654
exper | .0826696 .0170277 4.86 0.000 .049296 .1160433

expersq | -.0012896 .0005369 -2.40 0.016 -.002342 -.0002372
age | -.0330806 .0075921 -4.36 0.000 -.0479609 -.0182003

kidslt6 | -.5040406 .1074788 -4.69 0.000 -.7146951 -.293386
kidsge6 | .0698201 .0387332 1.80 0.071 -.0060955 .1457357

_cons | -.3656166 .4476569 -0.82 0.414 -1.243008 .5117748
---------------------------------------------------------------------------

/athrho | -2.131542 .174212 -12.24 0.000 -2.472991 -1.790093
/lnsigma | .1895611 .0419657 4.52 0.000 .1073099 .2718123

---------------------------------------------------------------------------
rho | -.9722333 .0095403 -.9858766 -.9457704

sigma | 1.208719 .0507247 1.113279 1.312341
lambda | -1.175157 .0560391 -1.284991 -1.065322

----------------------------------------------------------------------------
LR test of indep. eqns. (rho  0): chi2(1)  34.10 Prob  chi2  0.0000
----------------------------------------------------------------------------

. sum lhours

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

lhours | 428 6.86696 .9689285 2.484907 8.507143

. * log likelihood for the "selection" model:

. di -938.8208 - 428*6.86696
-3877.8797
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