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1. Introduction

∙ Consider the case with a corner at zero and a continuous distribution

for strictly positive values.

∙ Note that there is only one response here, y, and it is always observed.

The value zero is not arbitrary; it is observed data (labor supply,

charitable contributions).

∙ Often see discussions of the “selection” problem with corner solution

outcomes, but this is usually not appropriate.
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∙ Example: Family charitable contributions. A zero is a zero, and then

we see a range of positive values. We want to choose sensible, flexible

models for such a variable.

∙ Often define w as the binary variable equal to one if y  0, zero if

y  0. w is a deterministic function of y. We cannot think of a

counterfactual for y in the two different states. (“How much would the

family contribute to charity if it contributes nothing to charity?” “How

much would a woman work if she is out of the workforce?”)
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∙ Contrast previous examples with sound counterfactuals: How much

would a worker in if he/she participates in job training versus when

he/she does not? What is a student’s test score if he/she attends

Catholic school compared with if he/she does not?

∙ The statistical structure of a particular two-part model, and the

Heckman selection model, are very similar.
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∙Why should we move beyond Tobit? It can be too restrictive because

a single mechanism governs the “participation decision” (y  0 versus

y  0) and the “amount decision” (how much y is if it is positive).

∙ Recall that, in a Tobit model, for a continuous variable xj, the partial

effects on Py  0|x and Ey|x,y  0 have the same signs (different

multiples of j. So, it is impossible for xj to have a positive effect on

Py  0|x and a negative effect on Ey|x,y  0. A similar comment

holds for discrete covariates.
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∙ Furthermore, for continuous variables xj and xh,

∂Py  0|x/∂xj

∂Py  0|x/∂xh


j
h


∂Ey|x,y  0/∂xj

∂Ey|x,y  0/∂xh

∙ So, if xj has twice the effect as xh on the participation decision, xj

must have twice the effect on the amount decision, too.

∙ Two-part models allow different mechanisms for the participation and

amount decisions. Often, the economic argument centers around fixed

costs from participating in an activity. (For example, labor supply.)
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2. A General Formulation

∙ Useful to have a general way to think about two-part models without

specif distributions. Let w be a binary variable that determines whether

y is zero or strictly positive. Let y∗ be a nonnegative, continuous

random variable. Assume y is generated as

y  w  y∗.

∙ Other than w being binary and y∗ being continuous, there is another

important difference between w and y∗: we effectively observe w

because w is observationally equivalent to the indicator 1y  0

(Py∗  0). But y∗ is only observed when w  1, in which case

y∗  y.
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∙ Generally, we might want to allow w and y∗ to be dependent, but that

is not as easy as it seems. A useful assumption is that w and y∗ are

independent conditional on explanatory variables x, which we can write

as

Dy∗|w,x  Dy∗|x.

∙ This assumption typically underlies two-part or hurdle models.

∙ One implication is that the expected value of y conditional on x and w

is easy to obtain:

Ey|x,w  w  Ey∗|x,w  w  Ey∗|x.

8



∙ Sufficient is conditional mean independence,

Ey∗|x,w  Ey∗|x.

∙When w  1, we can write

Ey|x,y  0  Ey∗|x,

so that the so-called “conditional” expectation of y (where we condition

on y  0) is just the expected value of y∗ (conditional on x).

∙ The so-called “unconditional” expectation is

Ey|x  Ew|xEy∗|x  Pw  1|xEy∗|x.

9



∙ A different class of models explicitly allows correlation between the

participation and amount decisions Unfortunately, called a selection

model. Has led to considerable conclusion for corner solution

responses.

∙Must keep in mind that we only observe one variable, y (along with

x. In true sample selection environments, the outcome of the selection

variable (w in the current notation) does not logically restrict the

outcome of the response variable. Here, w  0 rules out y  0.

∙ In the end, we are trying to get flexible models for Dy|x.
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3. Truncated Normal Hurdle Model

∙ Cragg (1971) proposed a natural two-part extension of the type I

Tobit model. The conditional independence assumption is assumed to

hold, and the binary variable w is assumed to follow a probit model:

Pw  1|x  x.

∙ Further, y∗ is assumed to have a truncated normal distribution with

parameters that vary freely from those in the probit. Can write

y∗  x  u

where u given x has a truncated normal distribution with lower

truncation point −x.
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∙ Because y  y∗ when y  0, we can write the truncated normal

assumption in terms of the density of y given y  0 (and x):

fy|x,y  0  x/−1y − x//, y  0,

where the term x/−1 ensures that the density integrates to unity

over y  0.

∙ The density of y given x can be written succinctly as

fy|x  1 − x1y0xx/−1y − x//1y0,

where we must multiply fy|x,y  0 by Py  0|x  x.
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∙ Called the truncated normal hurdle (THN) model. Cragg (1971)

directly specified the density.

∙ Nice feature of the TNH model: it reduces to the type I Tobit model

when   /.

∙ The log-likelihood function for a random draw i is

li  1yi  0 log1 − xi  1yi  0 logxi

 1yi  0− logxi/  logyi − xi/ − log.

Because the parameters , , and  are allowed to freely vary, the MLE

for , ̂, is simply the probit estimator from probit of wi ≡ 1yi  0 on

xi. The MLEs of  and  (or  and 2 are the MLEs from a truncated

normal regression.
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∙ The conditional expectation has the same form as the Type I Tobit

because Dy|x,y  0 is identical in the two models:

Ey|x,y  0  x  x/.

∙ In particular, the effect of xj has the same sign as j (for continous or

discrete changes).

∙ But now, the relative effect of two continuous variables on the

participation probabilities,  j/h, can be completely different from

j/h, the ratio of partial effects on Ey|x,y  0.
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∙ The unconditional expectation for the Cragg model is

Ey|x  xx  x/.

The partial effects no longer have a simple form, but they are not too

difficult to compute:

∂Ey|x
∂xj

  jxx  x/  xjx/,

where z  1 − zz  z.

∙ Note that

logEy|x  logx  logEy|x,y  0.
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∙ The semi-elasticity with respect to xj is 100 times

 jx  jx//x  x/

∙ If xj  logzj, then the above expression is the elasticity of Ey|x

with respect to zj.

∙We can insert the MLEs into any of the equations and average across

xi to obtain an average partial effect, average semi-elastisticity, or

average elasticity. As in many nonlinear contexts, the bootstrap is a

convienent method for obtaining valid standard errors.

∙ Can get goodness-of-fit measures as before. For example, the squared

correlation between yi and Êyi|xi  xîxî  ̂xî/̂.
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4. Lognormal Hurdle Model

∙ Cragg (1971) also suggested the lognormal distribution conditional on

a positive outcome. One way to express y is

y  w  y∗  1x  v  0expx  u,

where u,v is independent of x with a bivariate normal distribution;

further, u and v are independent.

∙ y∗ has a lognormal distribution because

y∗  expx  u
u|x~Normal0,2.

Called the lognormal hurdle (LH) model.
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∙ The expected value conditional on y  0 is

Ey|x,y  0  Ey∗|x,w  1  Ey∗|x  expx  2/2.

∙ The semi-elasticity of Ey|x,y  0 with respect to xj is 100j. If

xj  logzj, j is the elasticity of Ey|x,y  0 with respect to zj.

∙ The “unconditional” expectation is

Ey|x  xexpx  2/2.

∙ The semi-elasticity of Ey|x with respect to xj is simply (100 times)

 jx  j where  is the inverse Mills ratio. If xj  logzj, this

expression becomes the elasticity of Ey|x with respect to zj.

18



∙ Estimation of the parameters is particularly straightforward. The

density conditional on x is

fy|x  1 − x1y0xlogy − x//y1y0,

which leads to the log-likelihood function for a random draw:

li  1yi  0 log1 − xi  1yi  0 logxi

 1yi  0loglogyi − xi/ − log − logyi.

∙ As with the truncated normal hurdle model, estimation of the

parameters can proceed in two steps. The first is probit of wi on xi to

estimate , and then  is estimated using an OLS regression of logyi

on xi for observations with yi  0.
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∙ The usual error variance estimator (or without the degrees-of-freedom

adjustment), ̂2, is consistent for 2.

∙ In computing the log likelihood to compare fit across models, must

include the terms logyi. In particular, for comparing with the TNH

model.

∙ Can relax the lognormality assumption if we are satisfied with

estimates of Py  0|x, Ey|x,y  0, and Ey|xare easy to obtain.
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∙ Nevertheless, if we are mainly interested in these three features of

Dy|x, we can get by with weaker assumptions. If in y∗  expx  u

we assume that u is independent of x, can use Duan’s (1983) smearing

estimate.

∙ Uses Ey∗|x  Eexpu expx ≡ expx where  ≡ Eexpu.

∙ Let ûi be OLS residuals from logyi on xi using the yi  0 data. Let

̂  N−1∑
i1

N

expûi.

Then, Êy|x,y  0  ̂expx̂, where ̂ is the OLS estimator of

logyi on xi using the yi  0 subsample.
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∙More direct approach: just specify

Ey|x,y  0  expx,

which contains y∗  expx  u, with u independent of x, as a special

case.

∙ Use nonlinear least squares or a quasi-MLE in the linear exponential

family (such as the Poisson or gamma).

∙ Given probit estimates of Py  0|x  x and QMLE estimates

of Ey|x,y  0  expx, can easily estimate Ey|x  xexpx

without additional distributional assumptions.
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5. Exponential Type II Tobit Model

∙ Now allow w and y∗ to be dependent after conditioning on observed

covariates, x. Seems natural – for example, unobserved factors that

affect labor force participation can affect amount of hours.

∙ Can modify the lognormal hurdle model to allow conditional

correlation between w and y∗. Call the resulting model the exponential

type II Tobit (ET2T) model.

∙ Traditionally, the type II Tobit model has been applied to missing

data problems – that is, where we truly have a sample selection issue.

Here, we use it as a way to obtain a flexible corner solution model.
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∙ As with the lognormal hurdle model,

y  1x  v  0expx  u

We use the qualifier “exponential” to emphasize that we should have

y∗  expx  u.

∙ Later we will see why it makes no sense to have y∗  x  u, as is

often the case in the study of type II Tobit models of sample selection.

∙ Because v has variance equal to one, Covu,v  , where  is the

correlation between u and v and 2  Varu.
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∙ Obtaining the log likelihood in this case is a bit tricky. Let

m∗  logy∗, so that Dm∗|x is Normalx,2. Then

logy  m∗when y  0. We still have Py  0|x  1 − x.

∙ To obtain the density of y (conditional on x) over strictly positive

values, we find fy|x,y  0 and multiply it by Py  0|x  x.

∙ To find fy|x,y  0, we use the change-of-variables formula

fy|x,y  0  glogy|x,y  0/y, where g|x,y  0 is the density of

m∗ conditional on y  0 (and x).
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∙ Use Bayes’ rule to write

gm∗|x,w  1  Pw  1|m∗,xhm∗|x/Pw  1|x where hm∗|x is

the density of m∗ given x. Then,

Pw  1|xgm∗|x,w  1  Pw  1|m∗,xhm∗|x.

∙Write w  1x  v  0  1x  /u  e  0, where

v  /u  e and e|x,u~Normal0, 1 − 2. Because u  m∗ − x,

we have Pw  1|m∗,x  x  /m∗ − x1 − 2−1/2.
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∙ Further, we have assumed that hm∗|x is Normalx,2. Therefore,

the density of y given x over strictly positive y is

fy|x  x  /y − x1 − 2−1/2logy − x//y.

∙ Combining this expression with the density at y  0 gives the log

likelihood as

li  1yi  0 log1 − xi

 1yi  0logxi  /logyi − xi1 − 2−1/2

 loglogyi − xi/ − log − logyi.
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∙Many econometrics packages have this estimator programmed,

although the emphasis is on sample selection problems. To use

Heckman sample selection software, one defines logyi as the variable

where the data are “missing” when yi  0) When   0, we obtain the

log likelihood for the lognormal hurdle model from the previous

subsection.
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∙ For a true missing data problem, the last term in the log likelihood,

logyi, is not included. That is because in sample selection problems

the log-likelihood function is only a partial log likelihood. Inclusion of

logyi does not affect the estimation problem, but it does affect the

value of the log-likelihood function, which is needed to compare across

different models.)
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∙ The ET2T model contains the conditional lognormal model from the

previous subsection. But the ET2T model with unknown  can be

poorly identified if the set of explanatory variables that appears in

y∗  expx  u is the same as the variables in w  1x  v  0.

∙ Various ways to see the potential problem. Can show that

Elogy|x,y  0  x  x

where  is the inverse Mills ratio and   .
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∙We know we can estimate  by probit, so this equation nominally

identifies  and . But identification is possible only because  is a

nonlinear function, but  is roughly linear over much of its range.

∙ The formula for Elogy|x,y  0 suggests a two-step procedure,

usually called Heckman’s method or Heckit. First, ̂ from probit of wi

on xi. Second, ̂ and ̂ are obtained from OLS of logyi on xi, xî

using only observations with yi  0.
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∙ The correlation between ̂i can often be very large, resulting in

imprecise estimates of  and .

∙ Can be shown that the unconditional expectation is

Ey|x  x  expx  2/2,

which is exactly of the same form as in the LH model (with   0

except for the presence of   . Because x always should include a

constant,  is not separately identified by Ey|x (and neither is 2/2).
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∙ If we based identification entirely on Ey|x, there would be no

difference between the lognormal hurdle model and the ET2T model

when the same set of regressors appears in the participation and amount

equations.

∙ Still, the parameters are technically identified, and so we can always

try to estimate the full model with the same vector x appearing in the

participation and amount equations.
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∙ The ET2T model is more convincing when the covariates determining

the participation decision strictly contain those affecting the amount

decision. Then, the model can be expressed as

y  1x  v ≥ 0  expx11  u,

where both x and x1 contain unity as their first elements but x1 is a

strict subset of x. If we write x  x1,x2, then we are assuming

2 ≠ 0.

∙ Given at least one exclusion restriction, we can see from

Elogy|x,y  0  x11  x that 1 and  are better identified

because x is not an exact function of x1.
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∙ Exclusion restrictions can be hard to come by. Need something

affecting the fixed cost of participating but not affecting the amount.

∙ Cannot use y rather than logy in the amount equation. In the TNH

model, the truncated normal distribution of u at the value −x ensures

that y∗  x  u  0.

∙ If we apply the type II Tobit model directly to y, we must assume

u,v is bivariate normal and independent of x. What we gain is that u

and v can be correlated, but this comes at the cost of not specifying a

proper density because the T2T model allows negative outcomes on y.
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∙ If we apply the “selection” model to y we would have

Ey|x,y  0  x  x.

∙ Possible to get negative values for Ey|x,y  0, especially when

  0. It only makes sense to apply the T2T model to logy in the

context of two-part models.

∙ Example of Two-Part Models: Married Women’s Labor Supply
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(1) (2) (3)
Model Truncated Normal Lognormal Exponential

Hurdle Hurdle Type II Tobit
Participation Equation
nwifeinc −. 012 . 005 −. 012 . 005 −. 0097 . 0043
educ . 131 . 025 . 131 . 025 . 120 . 022
exper . 123 . 019 . 123 . 019 . 083 . 017
exper2 −. 0019 . 0006 −. 0019 . 0006 −. 0013 . 0005
age −. 088 . 015 −. 088 . 015 −. 033 . 008
kidslt6 −. 868 . 119 −. 868 . 119 −. 504 . 107
kidsge6 .036 . 043 . 036 . 043 . 070 . 039
constant . 270 . 509 . 270 . 509 −. 367 . 448
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(1) (2) (3)
Model Truncated Normal Lognormal Exponential

Hurdle Hurdle Type II Tobit
Amount Equation hours loghours loghours
nwifeinc . 153 5.164 −. 0020 . 0044 .0067 . 0050
educ −29.85 22.84 −. 039 . 020 −. 119 . 024
exper 72.62 21.24 . 073 . 018 −. 033 . 020
exper2 −. 944 . 609 −. 0012 . 0005 . 0006 . 0006
age −27.44 8.29 −. 024 . 007 . 014 . 008
kidslt6 −484.91 153.79 −. 585 . 119 . 208 . 134
kidsge6 −102.66 43.54 −. 069 . 037 −. 092 . 043
constant 2, 123.5 483.3 7.90 . 43 8.67 . 50
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(1) (2) (3)
Model Truncated Normal Lognormal Exponential

Hurdle Hurdle Type II Tobit
̂ 850.77 43.80 . 884 . 030 1.209 . 051
̂ — — −. 972 . 010

Log Likelihood −3,791.95 −3,894.93 −3,877.88
Number of Women 753 753 753
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. * use mroz

. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Probit regression Number of obs  753
LR chi2(7)  227.
Prob  chi2  0.0000

Log likelihood  -401.30219 Pseudo R2  0.2206

----------------------------------------------------------------------------
inlf | Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378

educ | .1309047 .0252542 5.18 0.000 .0814074 .180402
exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311

expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111
age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376

kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029
kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179

_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901
----------------------------------------------------------------------------
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. truncreg hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
(note: 325 obs. truncated)

Truncated regression
Limit: lower  0 Number of obs  428

upper  inf Wald chi2(7)  59.
Log likelihood  -3390.6476 Prob  chi2  0.0000

----------------------------------------------------------------------------
hours | Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
nwifeinc | .1534399 5.164279 0.03 0.976 -9.968361 10.27524

educ | -29.85254 22.83935 -1.31 0.191 -74.61684 14.91176
exper | 72.62273 21.23628 3.42 0.001 31.00039 114.2451

expersq | -.9439967 .6090283 -1.55 0.121 -2.13767 .2496769
age | -27.44381 8.293458 -3.31 0.001 -43.69869 -11.18893

kidslt6 | -484.7109 153.7881 -3.15 0.002 -786.13 -183.2918
kidsge6 | -102.6574 43.54347 -2.36 0.018 -188.0011 -17.31379

_cons | 2123.516 483.2649 4.39 0.000 1176.334 3070.697
---------------------------------------------------------------------------

/sigma | 850.766 43.80097 19.42 0.000 764.9177 936.6143
----------------------------------------------------------------------------

. * log likelihood for Cragg truncated normal hurdle model

. di -3390.6476 - 401.30219
-3791.9498

. * A trick to get the log likelihood for the lognormal hurdle model:
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. tobit lhours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)

Tobit regression Number of obs  428
LR chi2(7)  77.
Prob  chi2  0.0000

Log likelihood  -554.56647 Pseudo R2  0.0653

----------------------------------------------------------------------------
lhours | Coef. Std. Err. t P|t| [95% Conf. Interval

---------------------------------------------------------------------------
nwifeinc | -.0019676 .0044019 -0.45 0.655 -.01062 .0066848

educ | -.0385626 .02002 -1.93 0.055 -.0779142 .0007891
exper | .073237 .0177323 4.13 0.000 .0383821 .1080919

expersq | -.001233 .0005328 -2.31 0.021 -.0022803 -.0001858
age | -.0236706 .0071799 -3.30 0.001 -.0377836 -.0095576

kidslt6 | -.585202 .1174928 -4.98 0.000 -.8161477 -.3542563
kidsge6 | -.0694175 .0369849 -1.88 0.061 -.1421156 .0032806

_cons | 7.896267 .4220778 18.71 0.000 7.066625 8.72591
---------------------------------------------------------------------------

/sigma | .884067 .0302167 .8246725 .9434614
----------------------------------------------------------------------------

Obs. summary: 0 left-censored observations
428 uncensored observations

0 right-censored observations
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. * log likelihood for lognormal hurdle:

. sum lhours

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

lhours | 428 6.86696 .9689285 2.484907 8.507143

. di -401.30219 - 554.56647 - 428*6.86696
-3894.9275

. * Now get the llf for each nonzero observation to compute the Vuong

. * test for the truncated normal versus lognormal.

. predict xb1
(option xb assumed; fitted values)

. gen llf1  log(normalden((lhours - xb1)/.88407)) - log(.88407) - lhours
(325 missing values generated)
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. truncreg hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
(note: 325 obs. truncated)

Truncated regression
Limit: lower  0 Number of obs  428

upper  inf Wald chi2(7)  59.
Log likelihood  -3390.6476 Prob  chi2  0.0000

----------------------------------------------------------------------------
hours | Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
nwifeinc | .1534399 5.164279 0.03 0.976 -9.968361 10.27524

educ | -29.85254 22.83935 -1.31 0.191 -74.61684 14.91176
exper | 72.62273 21.23628 3.42 0.001 31.00039 114.2451

expersq | -.9439967 .6090283 -1.55 0.121 -2.13767 .2496769
age | -27.44381 8.293458 -3.31 0.001 -43.69869 -11.18893

kidslt6 | -484.7109 153.7881 -3.15 0.002 -786.13 -183.2918
kidsge6 | -102.6574 43.54347 -2.36 0.018 -188.0011 -17.31379

_cons | 2123.516 483.2649 4.39 0.000 1176.334 3070.697
---------------------------------------------------------------------------

/sigma | 850.766 43.80097 19.42 0.000 764.9177 936.6143
----------------------------------------------------------------------------
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. predict xb2, xb

. gen u2  hours - xb2

. gen llf2  log(normalden(u2/ 850.766 )) - log( 850.766 )
- log(normal(xb2/ 850.766))

. replace llf2  . if hours  0
(325 real changes made, 325 to missing)

. gen diff  llf2 - llf1
(325 missing values generated)
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. reg diff

Source | SS df MS Number of obs  428
------------------------------------------- F( 0, 427)  0.

Model | 0 0 . Prob  F 
Residual | 203.969251 427 .477679746 R-squared  0.0000

------------------------------------------- Adj R-squared  0.0000
Total | 203.969251 427 .477679746 Root MSE  .69114

----------------------------------------------------------------------------
diff | Coef. Std. Err. t P|t| [95% Conf. Interval

---------------------------------------------------------------------------
_cons | .2406023 .0334077 7.20 0.000 .1749383 .3062663

----------------------------------------------------------------------------

. * The Vuong test strongly rejects the lognormal in favor of the truncated

. * in terms of fit.
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. heckman lhours nwifeinc educ exper expersq age kidslt6 kidsge6,
select(inlf  nwifeinc educ exper expersq age kidslt6 kidsge6)

Iteration 0: log likelihood  -956.85771
Iteration 1: log likelihood  -952.20425
Iteration 2: log likelihood  -940.24444
Iteration 3: log likelihood  -938.83566
Iteration 4: log likelihood  -938.82081
Iteration 5: log likelihood  -938.8208

Heckman selection model Number of obs  753
(regression model with sample selection) Censored obs  325

Uncensored obs  428

Wald chi2(7)  35.
Log likelihood  -938.8208 Prob  chi2  0.0000

----------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval

---------------------------------------------------------------------------
lhours |

nwifeinc | .0066597 .0050147 1.33 0.184 -.0031689 .0164882
educ | -.1193085 .0242235 -4.93 0.000 -.1667858 -.0718313

exper | -.0334099 .0204429 -1.63 0.102 -.0734773 .0066574
expersq | .0006032 .0006178 0.98 0.329 -.0006077 .0018141

age | .0142754 .0084906 1.68 0.093 -.0023659 .0309167
kidslt6 | .2080079 .1338148 1.55 0.120 -.0542643 .4702801
kidsge6 | -.0920299 .0433138 -2.12 0.034 -.1769235 -.0071364

_cons | 8.670736 .498793 17.38 0.000 7.69312 9.648352
---------------------------------------------------------------------------
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inlf |
nwifeinc | -.0096823 .0043273 -2.24 0.025 -.0181637 -.001201

educ | .119528 .0217542 5.49 0.000 .0768906 .1621654
exper | .0826696 .0170277 4.86 0.000 .049296 .1160433

expersq | -.0012896 .0005369 -2.40 0.016 -.002342 -.0002372
age | -.0330806 .0075921 -4.36 0.000 -.0479609 -.0182003

kidslt6 | -.5040406 .1074788 -4.69 0.000 -.7146951 -.293386
kidsge6 | .0698201 .0387332 1.80 0.071 -.0060955 .1457357

_cons | -.3656166 .4476569 -0.82 0.414 -1.243008 .5117748
---------------------------------------------------------------------------

/athrho | -2.131542 .174212 -12.24 0.000 -2.472991 -1.790093
/lnsigma | .1895611 .0419657 4.52 0.000 .1073099 .2718123

---------------------------------------------------------------------------
rho | -.9722333 .0095403 -.9858766 -.9457704

sigma | 1.208719 .0507247 1.113279 1.312341
lambda | -1.175157 .0560391 -1.284991 -1.065322

----------------------------------------------------------------------------
LR test of indep. eqns. (rho  0): chi2(1)  34.10 Prob  chi2  0.0000
----------------------------------------------------------------------------

. sum lhours

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

lhours | 428 6.86696 .9689285 2.484907 8.507143

. * log likelihood for the "selection" model:

. di -938.8208 - 428*6.86696
-3877.8797
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