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1. Introduction
e Consider the case with a corner at zero and a continuous distribution
for strictly positive values.
e Note that there is only one response here, y, and it is always observed.
The value zero is not arbitrary; it is observed data (labor supply,
charitable contributions).
e Often see discussions of the “selection” problem with corner solution

outcomes, but this is usually not appropriate.



e Example: Family charitable contributions. A zero iIs a zero, and then
we see a range of positive values. We want to choose sensible, flexible
models for such a variable.

e Often define w as the binary variable equal to one ify > 0, zero if

y = 0. w is a deterministic function of y. We cannot think of a
counterfactual for y in the two different states. (“How much would the
family contribute to charity if it contributes nothing to charity?” “How

much would a woman work if she is out of the workforce?”)



e Contrast previous examples with sound counterfactuals: How much
would a worker in if he/she participates in job training versus when
he/she does not? What is a student’s test score if he/she attends
Catholic school compared with if he/she does not?

e The statistical structure of a particular two-part model, and the

Heckman selection model, are very similar.



e \Why should we move beyond Tobit? It can be too restrictive because
a single mechanism governs the “participation decision” (y = 0 versus
y > 0) and the “amount decision” (how much y is if it is positive).

e Recall that, in a Tobit model, for a continuous variable x;, the partial
effects on P(y > 0|x) and E(y|x,y > 0) have the same signs (different
multiples of §;). So, it is impossible for x; to have a positive effect on
P(y > 0|x) and a negative effect on E(y|x,y > 0). A similar comment

holds for discrete covariates.



e Furthermore, for continuous variables x;j and Xn,

oP(y > Q[x)/ox; — Bj  OE(YIXy > 0)/0X;
OP(y > O)x)/oxn  Pn OE(Y|X,y > 0)/oxn

e So, If Xxj has twice the effect as x, on the participation decision, X;
must have twice the effect on the amount decision, too.

e Two-part models allow different mechanisms for the participation and
amount decisions. Often, the economic argument centers around fixed

costs from participating in an activity. (For example, labor supply.)



2. A General Formulation

e Useful to have a general way to think about two-part models without
specif distributions. Let w be a binary variable that determines whether
y IS zero or strictly positive. Let y* be a nonnegative, continuous

random variable. Assume y Is generated as

y=W-y".
e Other than w being binary and y* being continuous, there is another
Important difference between w and y*: we effectively observe w
because w is observationally equivalent to the indicator 1[y > 0]
(P(y* = 0)). But y* is only observed when w = 1, in which case

y* =Y.



e Generally, we might want to allow w and y* to be dependent, but that
IS not as easy as it seems. A useful assumption is that w and y* are

Independent conditional on explanatory variables x, which we can write

as
D(y*|w,Xx) = D(y*|X).

e This assumption typically underlies two-part or hurdle models.
e One implication is that the expected value of y conditional on x and w

IS easy to obtain:

E(y|X,W) =W E(y*|X,W) =W E(y*|X)



e Sufficient is conditional mean independence,
E(y*[x,w) = E(y*[x).
e Whenw = 1, we can write
E(ylx,y > 0) = E(y*[x),
so that the so-called “conditional” expectation of y (where we condition

ony > 0) is just the expected value of y* (conditional on x).

e The so-called “unconditional” expectation is

E(yx) = E(WXE(Y*[x) = P(w = 1X)E(y*[x).



e A different class of models explicitly allows correlation between the
participation and amount decisions Unfortunately, called a selection
model. Has led to considerable conclusion for corner solution
responses.

e Must keep in mind that we only observe one variable, y (along with
X). In true sample selection environments, the outcome of the selection
variable (w in the current notation) does not logically restrict the
outcome of the response variable. Here, w = O rules outy > O.

e In the end, we are trying to get flexible models for D(y|x).
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3. Truncated Normal Hurdle Model

e Cragg (1971) proposed a natural two-part extension of the type |
Tobit model. The conditional independence assumption is assumed to

hold, and the binary variable w is assumed to follow a probit model:
P(w = 1|x) = ®(xy).

e Further, y* is assumed to have a truncated normal distribution with

parameters that vary freely from those in the probit. Can write
y* =xp+u

where u given x has a truncated normal distribution with lower

truncation point —x.
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e Because y = y* wheny > 0, we can write the truncated normal

assumption in terms of the density of y giveny > 0 (and x):

fyjx,y > 0) = [®(xB/o)] ' ¢[(y — xB)/c]lo, y > 0,
where the term [@(xB/o)] ! ensures that the density integrates to unity

overy > Q.

e The density of y given x can be written succinctly as

flyx) = [1 - @)V d(xp)[D(XB/o)] 4L (y — xB)/o /o 170,

where we must multiply f(y|x,y > 0) by P(y > 0|x) = ®(xy).
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e Called the truncated normal hurdle (THN) model. Cragg (1971)
directly specified the density.
¢ Nice feature of the TNH model: it reduces to the type | Tobit model

when y = B/o.
e The log-likelihood function for a random draw i Is
1i(8) = 1lyi = 0]log[1 — @(xiy)] + 1[yi > O]log[@(Xiv)]

+ 1[yi > 0]{-log[®@(xip/o)] + log{[(yi — XiB)/c]} —log(o)}.
Because the parameters vy, B, and o are allowed to freely vary, the MLE
for vy, ¥, is simply the probit estimator from probit of w; = 1[y; > 0] on
Xi. The MLEs of B and o (or B and o2) are the MLEs from a truncated

normal regression.
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e The conditional expectation has the same form as the Type | Tobit

because D(y|x,y > 0) is identical in the two models:
E(ylx,y > 0) = XB + cA(XP/o).

e In particular, the effect of x; has the same sign as g; (for continous or
discrete changes).

e But now, the relative effect of two continuous variables on the
participation probabilities, yj/yn, can be completely different from

Bil Bn, the ratio of partial effects on E(y|x,y > 0).
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¢ The unconditional expectation for the Cragg model is

E(yIx) = @(xy)[XB + oA (xB/o)].
The partial effects no longer have a simple form, but they are not too

difficult to compute:

CEOD) — X + GAOPIN] + DOROCKB),

where 8(z) = 1 - A(2D)[z + A(2)].
e Note that

log[E(y|x)] = log[®(xy)] + log[E(y|x,y > 0)].
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e The semi-elasticity with respect to x; is 100 times

YiA(Xy) + BiO(XB/o)/[xB + o A(xBlo)]
e |If X; = log(z;j), then the above expression is the elasticity of E(y|x)
with respect to z;.
¢ \We can insert the MLESs into any of the equations and average across
Xi to obtain an average partial effect, average semi-elastisticity, or
average elasticity. As in many nonlinear contexts, the bootstrap is a
convienent method for obtaining valid standard errors.
e Can get goodness-of-fit measures as before. For example, the squared

correlation between y; and E(yixi) = ®(Xi§)[x, + GAXiB/6)].
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4. Lognormal Hurdle Model

e Cragg (1971) also suggested the lognormal distribution conditional on

a positive outcome. One way to express y is
y=W-y* =1[Xy+Vv > 0]exp(xp + u),

where (u, V) Is independent of x with a bivariate normal distribution;
further, u and v are independent.

e y* has a lognormal distribution because

y* = exp(xp + u)
ujx~Normal(0, 52).

Called the lognormal hurdle (LH) model.
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e The expected value conditional ony > 0 is

E(ylx,y > 0) = E(y*|x,w = 1) = E(y*|X) = exp(Xp + 5°/2).
e The semi-elasticity of E(y|x,y > 0) with respect to x; Is 1008;. If
Xj = log(z;), Bj Is the elasticity of E(y|x,y > 0) with respect to z;.
e The “unconditional” expectation is

E(y|x) = O(xy) exp(Xp + c2/2).

e The semi-elasticity of E(y|x) with respect to x; is simply (100 times)
yiA(Xy) + Bj where A(-) Is the inverse Mills ratio. If x; = log(z;), this

expression becomes the elasticity of E(y|x) with respect to z;.
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e Estimation of the parameters Is particularly straightforward. The

density conditional on X is

fly[x) = [1 — xy)] D=2 @(xy)p[(log(y) — XB)/al/(oy)} 070,
which leads to the log-likelihood function for a random draw:
1i(8) = 1[yi = 0]log[1 — @(xiy)] + 1lyi > O]log[D(Xiy)]
+ 1lyi > 0]{log(¢[(log(yi) — xiB)/c]) —log(c) —log(yi)}-
e As with the truncated normal hurdle model, estimation of the
parameters can proceed in two steps. The first is probit of wjon X; to

estimate vy, and then B is estimated using an OLS regression of log(yi)

on Xx; for observations with y; > O.
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e The usual error variance estimator (or without the degrees-of-freedom
adjustment), 62, is consistent for 2.

¢ [n computing the log likelihood to compare fit across models, must
Include the terms log(yi). In particular, for comparing with the TNH
model.

e Can relax the lognormality assumption if we are satisfied with

estimates of P(y > 0|x), E(y|x,y > 0), and E(y|x) are easy to obtain.
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e Nevertheless, If we are mainly interested in these three features of
D(y|x), we can get by with weaker assumptions. If in y* = exp(Xp + u)
we assume that u is independent of X, can use Duan’s (1983) smearing
estimate.

e Uses E(y*|x) = E[exp(u)] exp(XB) = texp(XP) where t = E[exp(u)].
e | et (; be OLS residuals from log(y;) on X; using the y; > 0 data. Let

Then, E(y|x,y > 0) = 7exp(xB), where B is the OLS estimator of

log(yi) on X; using the y; > 0 subsample.
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e More direct approach: just specify

E(ylx,y > 0) = exp(xB),
which contains y* = exp(Xp + u), with u independent of x, as a special
case.
e Use nonlinear least squares or a quasi-MLE in the linear exponential
family (such as the Poisson or gamma).
e Given probit estimates of P(y > 0x) = ®(xy) and QMLE estimates
of E(y|x,y > 0) = exp(XB), can easily estimate E(y|x) = ®(xy)exp(xp)

without additional distributional assumptions.
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5. Exponential Type Il Tobit Model

e Now allow w and y* to be dependent after conditioning on observed
covariates, X. Seems natural — for example, unobserved factors that
affect labor force participation can affect amount of hours.

e Can modify the lognormal hurdle model to allow conditional
correlation between w and y*. Call the resulting model the exponential
type 11 Tobit (ET2T) model.

e Traditionally, the type Il Tobit model has been applied to missing
data problems — that is, where we truly have a sample selection issue.

Here, we use it as a way to obtain a flexible corner solution model.
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e As with the lognormal hurdle model,

y = 1[xy+Vv > 0]exp(Xp + u)
We use the qualifier “exponential” to emphasize that we should have
y* = exp(Xp + u).
e |_ater we will see why it makes no sense to have y* = X + u, as Is
often the case in the study of type Il Tobit models of sample selection.

e Because v has variance equal to one, Cov(u,Vv) = po, where p is the

correlation between u and v and o = Var(u).
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e Obtaining the log likelihood In this case is a bit tricky. Let

m* = log(y*), so that D(m*|x) is Normal(xp, c?). Then

log(y) = m*wheny > 0. We still have P(y = 0|x) = 1 — ®(xy).

e To obtain the density of y (conditional on Xx) over strictly positive
values, we find f(y|x,y > 0) and multiply it by P(y > 0|x) = ®(xy).

e To find f(y|x,y > 0), we use the change-of-variables formula

f(ylx,y > 0) = g(log(y)|x,y > 0)/y, where g(-|x,y > 0) is the density of

m* conditional ony > 0 (and Xx).
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e Use Bayes’ rule to write

gim*|x,w = 1) = P(w = 1jm*,x)h(m*|x)/P(w = 1|x) where h(m*|x) is
the density of m* given x. Then,

P(w = 1[x)g(m*|x,w = 1) = P(w = 1lm*,x)h(m*|x).

e Writew = 1[xy+Vv > 0] = 1[xy + (p/o)u + e > 0], where

v = (plo)u + e and e|x, u~Normal(0, (1 — p?)). Because u = m* — xp,
we have P(Ww = 1|m*,x) = ®([xy + (p/o)(m* — xB)](1 — p?)~Y2).
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e Further, we have assumed that h(m*|x) is Normal(xp, o%). Therefore,

the density of y given x over strictly positive y IS

f(ylx) = @([xy + (plo)(y = xB)](L - p*) 7)) ((log(y) — xB)/o)/(aY).
e Combining this expression with the density aty = 0 gives the log

likelihood as

li(0) = 1[yi = 0]log[1 — D(Xiy)]
+ 1[yi > 0]{log[®([xiy + (plo)(log(yi) — xiB)](1 — p?)71?)
+log[¢((log(yi) — xiB)/o)] —log(c) — log(yi)}.
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e Many econometrics packages have this estimator programmed,
although the emphasis is on sample selection problems. To use
Heckman sample selection software, one defines log(yi) as the variable
where the data are “missing” when y; = 0) When p = 0, we obtain the
log likelihood for the lognormal hurdle model from the previous

subsection.
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e [or a true missing data problem, the last term in the log likelihood,
log(yi), 1s not included. That is because in sample selection problems
the log-likelihood function is only a partial log likelihood. Inclusion of
log(yi) does not affect the estimation problem, but it does affect the
value of the log-likelthood function, which is needed to compare across

different models.)
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e The ET2T model contains the conditional lognormal model from the
previous subsection. But the ET2T model with unknown p can be
poorly identified if the set of explanatory variables that appears in

y* = exp(Xp + u) is the same as the variables inw = 1[xy +v > 0].

e Various ways to see the potential problem. Can show that

E[log(y)|x,y > 0] = XB + nA(xy)

where A(-) Is the inverse Mills ratio and n = po.
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¢ \We know we can estimate y by probit, so this equation nominally
Identifies B and . But identification is possible only because A(-) Is a
nonlinear function, but A(-) is roughly linear over much of its range.
e The formula for E[log(y)|x,y > 0] suggests a two-step procedure,
usually called Heckman’s method or Heckit. First, ¥ from probit of w;
on Xj. Second, ﬁ and 7 are obtained from OLS of log(yi) on Xi, A(Xi¥)

using only observations with y; > 0.
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e The correlation between 1 can often be very large, resulting in
Imprecise estimates of g and 7.

e Can be shown that the unconditional expectation is
E(yx) = @(xy + 1) exp(xB + o2/2),

which is exactly of the same form as in the LH model (with p = 0)
except for the presence of n = po. Because x always should include a

constant, n is not separately identified by E(y|x) (and neither is 52/2).
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e |f we based identification entirely on E(y|x), there would be no
difference between the lognormal hurdle model and the ET2T model
when the same set of regressors appears in the participation and amount
equations.

e Still, the parameters are technically identified, and so we can always
try to estimate the full model with the same vector x appearing in the

participation and amount equations.
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e The ET2T model is more convincing when the covariates determining
the participation decision strictly contain those affecting the amount

decision. Then, the model can be expressed as

y = 1(xy+v = 0) - exp(X1f, +u),
where both x and x; contain unity as their first elements but x1 Is a
strict subset of x. If we write x = (X, X2), then we are assuming
Y, # 0.
e Given at least one exclusion restriction, we can see from
Ellog(y)|x,y > 0] = Xx1B, + nA(Xy) that B, and n are better identified

because A(Xy) Is not an exact function of x.
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e Exclusion restrictions can be hard to come by. Need something
affecting the fixed cost of participating but not affecting the amount.
e Cannot use y rather than log(y) in the amount equation. In the TNH
model, the truncated normal distribution of u at the value —x ensures
thaty* = xp+u > 0.

e |[f we apply the type Il Tobit model directly to y, we must assume
(u,Vv) Is bivariate normal and independent of x. What we gain is that u
and v can be correlated, but this comes at the cost of not specifying a

proper density because the T2T model allows negative outcomes ony.
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e |f we apply the “selection” model to y we would have

E(yX,y > 0) = XB + nA(xy).
e Possible to get negative values for E(y|x,y > 0), especially when
p < 0. It only makes sense to apply the T2T model to log(y) in the

context of two-part models.

e Example of Two-Part Models: Married Women’s Labor Supply
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(1) (2) (3)

Model Truncated Normal |  Lognormal Exponential

Hurdle Hurdle Type Il Tobit
Participation Equation
nwifeinc —. 012 (.005) —.012 (.005) | —.0097 (.0043)
educ .131 (.025) .131 (.025) .120 (.022)
exper .123 (.019) .123 (.019) .083 (.017)
exper? —. 0019 (.0006) —.0019 (.0006) -—.0013 (.0005)
age —. 088 (.015) —. 088 (.015) = —.033(.008)
kidslt6 —. 868 (.119) —.868 (.119) —-.504 (.107)
kidsge6 .036 (.043) .036 (.043) .070 (.039)
constant .270 (.509) .270 (.509) —.367 (.448)
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(1) (2) (3)

Model Truncated Normal | Lognormal Exponential

Hurdle Hurdle Type Il Tobit
Amount Equation hours log(hours) log(hours)
nwifeinc .153 (5.164) —.0020 (.0044) | .0067 (.0050)
educ —29.85(22.84) | —-.039(.020) | —.119(.024)
exper 72.62 (21.24) .073(.018) | —.033(.020)
exper? —.944 (.609) | —.0012 (.0005) .0006 (.0006)
age —27.44 (8.29) —.024 (.007) .014 (.008)
kidslt6 —484.91 (153.79) -.585 (.119) .208 (.134)
kidsge6 —102.66 (43.54) | —.069 (.037) | —.092 (.043)
constant 2,123.5 (483.3) 7.90 (.43) 8.67 (.50)

38




(1) (2) (3)
Model Truncated Normal | Lognormal = Exponential
Hurdle Hurdle | Type Il Tobit
o 850.77 (43.80) .884 (.030)  1.209 (.051)
p — — —. 972 (.010)
Log Likelihood —-3,791.95 -3,894.93 | -3,877.88
Number of Women 753 753 753
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. ¥ use mroz

. probit Inlf nwifeinc educ exper expersqg age kidslt6 kidsge6

Probit regression

Log likelihood = -401.30219

Number of obs

753
227 .
0.0000
0.2206

nwifeinc
educ
exper
expersq
age
kidslt6
kidsgeb
_cons

-.0120237
-1309047
.1233476

-.0018871

-.0528527

-.8683285

-036005
.2700768

-0006

.0084772
-1185223
.0434768

.508593

LR chi2(7) =

Prob > chi?2 =

Pseudo R2 =
P>|z] [95% Conf
0.013 -.0215096
0.000 .0814074
0.000 .0866641
0.002 -.003063
0.000 -.0694678
0.000 -1.100628
0.408 -.049208
0.595 -.7267473

-0048398
-0252542
.0187164

-.0025378
-180402
-1600311
-.0007111
-.0362376
-.636029
.1212179
1.266901
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. truncreg hou
(note: 325 obs

Truncated regr
Limit: lower

upper
Log likelihood

rs nwifeinc educ exper

expersq age kidslt6 kidsge6,

Number of obs
Wald chi2(7)
Prob > chi2

11(0)

|
+
nwifeinc |
educ |
exper |
expersq |
age |
kidslt6 |
kidsge6 |
_cons |

+

|

. truncated)
ession
= 0
= +inf
= -3390.6476
Coef Std. Err Z
.1534399 5.164279 0.03
-29.85254 22 .83935 -1.31
72.62273 21.23628 3.42
-.9439967 -6090283 -1.55
-27 .44381 8.293458 -3.31
-484.7109 153.7881 -3.15
-102.6574 43.54347 -2_.36
2123.516 483.2649 4_.39
850.766 43.80097 19.42

-9.968361
-74.61684
31.00039
-2.13767
-43.69869
-786.13
-188.0011
1176.334

10.27524
14.91176
114 .2451
.2496769
-11.18893
-183.2918
-17.31379
3070.697

. * log likelihood for Cragg truncated normal hurdle model

. di -3390.6476 - 401.30219

-3791.9498

. * A trick to get the log likelihood for the lognormal hurdle model:
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. tobit lhours nwifeinc educ exper expersq

Tobit regression

Log likelihood = -554.56647

age kidslt6 kidsge6,

Number of obs

11(0)

428
77.

0.0000

0.0653

|
+
nwifeinc |
educ |
exper |
expersq |
age |
kidslt6 |
kidsge6 |
_cons |

+

|

.073237
-.001233

-.0236706

-.585202

-.0694175

7.896267

-0044019

-02002
.0177323
-0005328
.0071799
.1174928
-0369849
.4220778

LR chi2(7) =
Prob > chi?2 =
Pseudo R2 =
P>|t] [95% ConfT
0.655 -.01062
0.055 .0779142
0.000 .0383821
0.021 .0022803
0.001 .0377836
0.000 .8161477
0.061 1421156
0.000 7.066625
.8246725

-.0019676
-.0385626

.0066848
.0007891
-1080919
-0001858
.0095576
.3542563
-0032806

8.72591

Obs. summary:

428

left-censored observations
uncensored observations
O right-censored observations
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. * log likelithood for lognormal hurdle:
. sum lhours
Variable | Obs Mean Std. Dev. Min Max

_____________ +________________________________________________________
lhours | 428 6.86696 .9689285  2.484907  8.507143

. di -401.30219 - 554.56647 - 428*6.86696
-3894.9275

. * Now get the IITf for each nonzero observation to compute the Vuong
. * test for the truncated normal versus lognormal.

. predict xbl
(option xb assumed; fitted values)

- gen Il = log(normalden((lhours - xb1)/.88407)) - 109(-88407) - lhours
(325 missing values generated)
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. truncreg hou
(note: 325 obs

Truncated regr
Limit: lower

upper
Log likelihood

rs nwifeinc educ exper

expersq age kidslt6 kidsge6,

Number of obs
Wald chi2(7)
Prob > chi2

11(0)

nwifeilnc
educ
exper
expersq
age
kidslt6
ki1dsge6
_cons

44

. truncated)
ession
= 0
= +inf
= -3390.6476
Coef Std. Err Z
.1534399 5.164279 0.03
-29.85254 22 .83935 -1.31
72.62273 21.23628 3.42
-.9439967 -6090283 -1.55
-27 .44381 8.293458 -3.31
-484.7109 153.7881 -3.15
-102.6574 43.54347 -2_.36
2123.516 483.2649 4_.39
850.766 43.80097 19.42

-9.968361
-74.61684
31.00039
-2.13767
-43.69869
-786.13
-188.0011
1176.334

10.27524
14.91176
114 .2451
.2496769
-11.18893
-183.2918
-17.31379
3070.697



. predict xb2, xb
. gen u2 = hours - xb2

. gen 112 = log(normalden(u2/ 850.766 )) - log( 850.766 )
- log(normal (xb2/ 850.766))

. replace 112 = _ 1T hours =
(325 real changes made, 325 to missing)

. gen diff = 112 - 1IT1
(325 missing values generated)
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reg diff

Source | SS df MS Number of obs = 428
————————————— e et FC O, 427) = 0.
Model | 0 0 ] Prob > F =
Residual | 203.969251 427 _477679746 R-squared = 0.0000
————————————— T e L L Lt Adj R-squared = 0.0000
Total | 203.969251 427 .477679746 Root MSE = .69114
diff | Coef. Std. Err. t P>|t] [95% Conf. Interval
_____________ +______________________________________________________________
_cons | .2406023 -0334077 7.20 0.000 -1749383 -3062663

. * The Vuong test strongly rejects the lognormal iIn favor of the truncated
. * 1In terms of fit.
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. heckman lhours nwifeinc educ exper expersq age kidslt6 kidsge6,

select(inlf = nwifeinc educ

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

arwWNEFLO

log
log
log
log
log
log

likeli1hood
likel1hood
likelihood
likeli1hood
likeli1hood
likel1hood

Heckman selection model
(regression model with sample selection)

Log likelihood = -938.8208

exper expersq age kidslt6 kidsge6)

-956.85771
-952.20425
-940.24444
-938.83566
-938.82081

-938.8208

Number of obs
Censored obs

Uncensored

obs

Wald chi2(?7)

Prob > chi2

753
325
428

35.
0.0000

lhours
nwifeilnc
educ
exper
expersq
age
kidslt6
kidsgeb6
_cons

[95% Conft.

Interval

Coef. Std. Err
.0066597 .0050147
-.1193085 0242235 -4
-.0334099 .0204429 -1.
.0006032 .0006178 0
.0142754 .0084906
.2080079 .1338148
-.0920299 .0433138 -2.
8.670736 498793 17.

-0031689
-.1667858
.0734773
.0006077
-0023659
.0542643
.1769235

7.69312

-0164882

-.0718313

.0066574
.0018141
-0309167
-4702801

-.0071364
9.648352



inlf
nwifeinc
educ
exper
expersq
age
kidslt6
kidsgeb
_cons
/athrho
/Insigma

sigma
lambda

-.0096823
-119528
.0826696
-.0012896
-.0330806
-.5040406
.0698201
-.3656166

-0043273
.0217542
.0170277
-0005369
-0075921
-1074788
.0387332
-4476569

-2.131542
-1895611

174212

-0419657

-.9722333
1.208719
-1.175157

-0095403
.0507247
.0560391

. sum lhours
Variable

lhours

428

6.86696

Std. Dev.
_____________ +________________________________________________________

.9689285

. * log likelthood for the "selection" model:

. di -938.8208 - 428*6.86696

-3877.8797

48

0.025 -.0181637 -_.001201
0.000 -0768906 .1621654
0.000 .049296 .1160433
0.016 -.002342 -.0002372
0.000 —-.0479609 -.0182003
0.000 -.7146951 -.293386
0.071 -_.0060955 .1457357
0.414 -1.243008 5117748
0.000 -2.472991 -1.790093
0.000 -1073099 2718123
-.9858766 -.9457704
1.113279 1.312341
-1.284991 -1.065322
34.10 Prob > chi2 = 0.0000
MiIn Max
2.484907 8.507143



