HURDLE AND "SELECTION" MODELS

Jeff Wooldridge
Michigan State University BGSE/IZA Course in Microeconometrics July 2009

1. Introduction
2. A General Formulation
3. Truncated Normal Hurdle Model
4. Lognormal Hurdle Model
5. Exponential Type II Tobit Model

1. Introduction

- Consider the case with a corner at zero and a continuous distribution for strictly positive values.
- Note that there is only one response here, y, and it is always observed.

The value zero is not arbitrary; it is observed data (labor supply, charitable contributions).

- Often see discussions of the "selection" problem with corner solution outcomes, but this is usually not appropriate.
- Example: Family charitable contributions. A zero is a zero, and then we see a range of positive values. We want to choose sensible, flexible models for such a variable.
- Often define w as the binary variable equal to one if $y>0$, zero if $y=0 . w$ is a deterministic function of y. We cannot think of a counterfactual for y in the two different states. ("How much would the family contribute to charity if it contributes nothing to charity?" "How much would a woman work if she is out of the workforce?")
- Contrast previous examples with sound counterfactuals: How much would a worker in if he/she participates in job training versus when he/she does not? What is a student's test score if he/she attends

Catholic school compared with if he/she does not?

- The statistical structure of a particular two-part model, and the Heckman selection model, are very similar.
- Why should we move beyond Tobit? It can be too restrictive because a single mechanism governs the "participation decision" ($y=0$ versus $y>0$) and the "amount decision" (how much y is if it is positive).
- Recall that, in a Tobit model, for a continuous variable x_{j}, the partial effects on $P(y>0 \mid \mathbf{x})$ and $E(y \mid \mathbf{x}, y>0)$ have the same signs (different multiples of β_{j}). So, it is impossible for x_{j} to have a positive effect on $P(y>0 \mid \mathbf{x})$ and a negative effect on $E(y \mid \mathbf{x}, y>0)$. A similar comment holds for discrete covariates.
- Furthermore, for continuous variables x_{j} and x_{h},

$$
\frac{\partial P(y>0 \mid \mathbf{x}) / \partial x_{j}}{\partial P(y>0 \mid \mathbf{x}) / \partial x_{h}}=\frac{\beta_{j}}{\beta_{h}}=\frac{\partial E(y \mid \mathbf{x}, y>0) / \partial x_{j}}{\partial E(y \mid \mathbf{x}, y>0) / \partial x_{h}}
$$

- So, if x_{j} has twice the effect as x_{h} on the participation decision, x_{j} must have twice the effect on the amount decision, too.
- Two-part models allow different mechanisms for the participation and amount decisions. Often, the economic argument centers around fixed costs from participating in an activity. (For example, labor supply.)

2. A General Formulation

- Useful to have a general way to think about two-part models without specif distributions. Let w be a binary variable that determines whether y is zero or strictly positive. Let y^{*} be a nonnegative, continuous random variable. Assume y is generated as

$$
y=w \cdot y^{*} .
$$

- Other than w being binary and y^{*} being continuous, there is another important difference between w and y^{*} : we effectively observe w because w is observationally equivalent to the indicator $1[y>0]$ $\left(P\left(y^{*}=0\right)\right)$. But y^{*} is only observed when $w=1$, in which case $y^{*}=y$.
- Generally, we might want to allow w and y^{*} to be dependent, but that is not as easy as it seems. A useful assumption is that w and y^{*} are independent conditional on explanatory variables \mathbf{x}, which we can write as

$$
D\left(y^{*} \mid w, \mathbf{x}\right)=D\left(y^{*} \mid \mathbf{x}\right)
$$

- This assumption typically underlies two-part or hurdle models.
- One implication is that the expected value of y conditional on \mathbf{x} and w is easy to obtain:

$$
E(y \mid \mathbf{x}, w)=w \cdot E\left(y^{*} \mid \mathbf{x}, w\right)=w \cdot E\left(y^{*} \mid \mathbf{x}\right)
$$

- Sufficient is conditional mean independence,

$$
E\left(y^{*} \mid \mathbf{x}, w\right)=E\left(y^{*} \mid \mathbf{x}\right) .
$$

- When $w=1$, we can write

$$
E(y \mid \mathbf{x}, y>0)=E\left(y^{*} \mid \mathbf{x}\right),
$$

so that the so-called "conditional" expectation of y (where we condition on $y>0$) is just the expected value of y^{*} (conditional on \mathbf{x}).

- The so-called "unconditional" expectation is

$$
E(y \mid \mathbf{x})=E(w \mid x) E\left(y^{*} \mid \mathbf{x}\right)=P(w=1 \mid \mathbf{x}) E\left(y^{*} \mid \mathbf{x}\right)
$$

- A different class of models explicitly allows correlation between the participation and amount decisions Unfortunately, called a selection model. Has led to considerable conclusion for corner solution responses.
- Must keep in mind that we only observe one variable, y (along with \mathbf{x}). In true sample selection environments, the outcome of the selection variable (w in the current notation) does not logically restrict the outcome of the response variable. Here, $w=0$ rules out $y>0$.
- In the end, we are trying to get flexible models for $D(y \mid \mathbf{x})$.

3. Truncated Normal Hurdle Model

- Cragg (1971) proposed a natural two-part extension of the type I Tobit model. The conditional independence assumption is assumed to hold, and the binary variable w is assumed to follow a probit model:

$$
P(w=1 \mid \mathbf{x})=\Phi(\mathbf{x} \boldsymbol{\gamma}) .
$$

- Further, y^{*} is assumed to have a truncated normal distribution with parameters that vary freely from those in the probit. Can write

$$
y^{*}=\mathbf{x} \boldsymbol{\beta}+u
$$

where u given \mathbf{x} has a truncated normal distribution with lower truncation point $-\mathbf{x} \boldsymbol{\beta}$.

- Because $y=y^{*}$ when $y>0$, we can write the truncated normal assumption in terms of the density of y given $y>0($ and $\mathbf{x})$:

$$
f(y \mid \mathbf{x}, y>0)=[\Phi(\mathbf{x} \boldsymbol{\beta} / \sigma)]^{-1} \phi[(y-\mathbf{x} \boldsymbol{\beta}) / \sigma] / \sigma, \quad y>0
$$

where the term $[\Phi(\mathbf{x} \boldsymbol{\beta} / \sigma)]^{-1}$ ensures that the density integrates to unity over $y>0$.

- The density of y given \mathbf{x} can be written succinctly as

$$
f(y \mid \mathbf{x})=[1-\Phi(\mathbf{x} \boldsymbol{\gamma})]^{1[y=0]}\left\{\Phi(\mathbf{x} \boldsymbol{\gamma})[\Phi(\mathbf{x} \boldsymbol{\beta} / \sigma)]^{-1} \phi[(y-\mathbf{x} \boldsymbol{\beta}) / \sigma] / \sigma\right\}^{1[y>0]}
$$

where we must multiply $f(y \mid \mathbf{x}, y>0)$ by $P(y>0 \mid \mathbf{x})=\Phi(\mathbf{x} \gamma)$.

- Called the truncated normal hurdle (THN) model. Cragg (1971) directly specified the density.
- Nice feature of the TNH model: it reduces to the type I Tobit model when $\gamma=\beta / \sigma$.
- The log-likelihood function for a random draw i is

$$
\begin{aligned}
l_{i}(\theta) & =1\left[y_{i}=0\right] \log \left[1-\Phi\left(\mathbf{x}_{i} \gamma\right)\right]+1\left[y_{i}>0\right] \log \left[\Phi\left(\mathbf{x}_{i} \gamma\right)\right] \\
+1\left[y_{i}\right. & >0]\left\{-\log \left[\Phi\left(\mathbf{x}_{i} \beta / \sigma\right)\right]+\log \left\{\phi\left[\left(y_{i}-\mathbf{x}_{i} \boldsymbol{\beta}\right) / \sigma\right]\right\}-\log (\sigma)\right\} .
\end{aligned}
$$

Because the parameters $\boldsymbol{\gamma}, \boldsymbol{\beta}$, and σ are allowed to freely vary, the MLE for $\gamma, \hat{\gamma}$, is simply the probit estimator from probit of $w_{i} \equiv 1\left[y_{i}>0\right]$ on \mathbf{x}_{i}. The MLEs of $\boldsymbol{\beta}$ and σ (or $\boldsymbol{\beta}$ and σ^{2}) are the MLEs from a truncated normal regression.

- The conditional expectation has the same form as the Type I Tobit because $D(y \mid \mathbf{x}, y>0)$ is identical in the two models:

$$
E(y \mid \mathbf{x}, y>0)=\mathbf{x} \boldsymbol{\beta}+\sigma \lambda(\mathbf{x} \boldsymbol{\beta} / \sigma) .
$$

- In particular, the effect of x_{j} has the same sign as β_{j} (for continous or discrete changes).
- But now, the relative effect of two continuous variables on the participation probabilities, γ_{j} / γ_{h}, can be completely different from β_{j} / β_{h}, the ratio of partial effects on $E(y \mid \mathbf{x}, y>0)$.
- The unconditional expectation for the Cragg model is

$$
E(y \mid \mathbf{x})=\Phi(\mathbf{x} \boldsymbol{\gamma})[\mathbf{x} \boldsymbol{\beta}+\sigma \lambda(\mathbf{x} \boldsymbol{\beta} / \sigma)] .
$$

The partial effects no longer have a simple form, but they are not too difficult to compute:

$$
\frac{\partial E(y \mid \mathbf{x})}{\partial x_{j}}=\gamma_{j} \phi(\mathbf{x} \boldsymbol{\gamma})[\mathbf{x} \boldsymbol{\beta}+\sigma \lambda(\mathbf{x} \boldsymbol{\beta} / \sigma)]+\Phi(\mathbf{x} \boldsymbol{\gamma}) \beta_{j} \theta(\mathbf{x} \boldsymbol{\beta} / \sigma),
$$

where $\theta(z)=1-\lambda(z)[z+\lambda(z)]$.

- Note that

$$
\log [E(y \mid x)]=\log [\Phi(x \gamma)]+\log [E(y \mid \mathbf{x}, y>0)] .
$$

- The semi-elasticity with respect to x_{j} is 100 times

$$
\gamma_{j} \lambda(\mathbf{x} \boldsymbol{\gamma})+\beta_{j} \theta(\mathbf{x} \boldsymbol{\beta} / \sigma) /[\mathbf{x} \boldsymbol{\beta}+\sigma \lambda(\mathbf{x} \boldsymbol{\beta} / \sigma)]
$$

- If $x_{j}=\log \left(z_{j}\right)$, then the above expression is the elasticity of $\mathrm{E}(y \mid \mathbf{x})$ with respect to z_{j}.
- We can insert the MLEs into any of the equations and average across \mathbf{x}_{i} to obtain an average partial effect, average semi-elastisticity, or average elasticity. As in many nonlinear contexts, the bootstrap is a convienent method for obtaining valid standard errors.
- Can get goodness-of-fit measures as before. For example, the squared correlation between y_{i} and $\hat{E}\left(y_{i} \mid \mathbf{x}_{i}\right)=\Phi\left(\mathbf{x}_{i} \hat{\boldsymbol{\gamma}}\right)\left[\mathbf{x}_{i} \hat{\boldsymbol{\beta}}+\hat{\sigma} \lambda\left(\mathbf{x}_{i} \hat{\boldsymbol{\beta}} / \hat{\sigma}\right)\right]$.

4. Lognormal Hurdle Model

- Cragg (1971) also suggested the lognormal distribution conditional on a positive outcome. One way to express y is

$$
y=w \cdot y^{*}=1[\mathbf{x} \boldsymbol{\gamma}+v>0] \exp (\mathbf{x} \boldsymbol{\beta}+u),
$$

where (u, v) is independent of \mathbf{x} with a bivariate normal distribution; further, u and v are independent.

- y^{*} has a lognormal distribution because

$$
\begin{aligned}
y^{*}= & \exp (\mathbf{x} \boldsymbol{\beta}+u) \\
& u \mid \mathbf{x} \sim \operatorname{Normal}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

Called the lognormal hurdle (LH) model.

- The expected value conditional on $y>0$ is

$$
E(y \mid \mathbf{x}, y>0)=E\left(y^{*} \mid \mathbf{x}, w=1\right)=E\left(y^{*} \mid \mathbf{x}\right)=\exp \left(\mathbf{x} \boldsymbol{\beta}+\sigma^{2} / 2\right)
$$

- The semi-elasticity of $E(y \mid \mathbf{x}, y>0)$ with respect to x_{j} is $100 \beta_{j}$. If $x_{j}=\log \left(z_{j}\right), \beta_{j}$ is the elasticity of $E(y \mid \mathbf{x}, y>0)$ with respect to z_{j}.
- The "unconditional" expectation is

$$
E(y \mid \mathbf{x})=\Phi(\mathbf{x} \boldsymbol{\gamma}) \exp \left(\mathbf{x} \boldsymbol{\beta}+\sigma^{2} / 2\right) .
$$

- The semi-elasticity of $\mathrm{E}(y \mid \mathbf{x})$ with respect to x_{j} is simply (100 times) $\gamma_{j} \lambda(\mathbf{x} \gamma)+\beta_{j}$ where $\lambda(\cdot)$ is the inverse Mills ratio. If $x_{j}=\log \left(z_{j}\right)$, this expression becomes the elasticity of $E(y \mid \mathbf{x})$ with respect to z_{j}.
- Estimation of the parameters is particularly straightforward. The density conditional on \mathbf{x} is

$$
f(y \mid \mathbf{x})=[1-\Phi(\mathbf{x} \boldsymbol{\gamma})]^{1[y=0]}\{\Phi(\mathbf{x} \boldsymbol{\gamma}) \phi[(\log (y)-\mathbf{x} \boldsymbol{\beta}) / \sigma] /(\sigma y)\}^{1[y>0]}
$$

which leads to the log-likelihood function for a random draw:

$$
\begin{aligned}
l_{i}(\theta) & =1\left[y_{i}=0\right] \log \left[1-\Phi\left(\mathbf{x}_{i} \gamma\right)\right]+1\left[y_{i}>0\right] \log \left[\Phi\left(\mathbf{x}_{i} \gamma\right)\right] \\
+1\left[y_{i}\right. & >0]\left\{\log \left(\phi\left[\left(\log \left(y_{i}\right)-\mathbf{x}_{i} \boldsymbol{\beta}\right) / \sigma\right]\right)-\log (\sigma)-\log \left(y_{i}\right)\right\} .
\end{aligned}
$$

- As with the truncated normal hurdle model, estimation of the parameters can proceed in two steps. The first is probit of w_{i} on \mathbf{x}_{i} to estimate $\boldsymbol{\gamma}$, and then $\boldsymbol{\beta}$ is estimated using an OLS regression of $\log \left(y_{i}\right)$ on \mathbf{x}_{i} for observations with $y_{i}>0$.
- The usual error variance estimator (or without the degrees-of-freedom adjustment), $\hat{\sigma}^{2}$, is consistent for σ^{2}.
- In computing the log likelihood to compare fit across models, must include the terms $\log \left(y_{i}\right)$. In particular, for comparing with the TNH model.
- Can relax the lognormality assumption if we are satisfied with estimates of $P(y>0 \mid \mathbf{x}), E(y \mid \mathbf{x}, y>0)$, and $E(y \mid \mathbf{x})$ are easy to obtain.
- Nevertheless, if we are mainly interested in these three features of $D(y \mid \mathbf{x})$, we can get by with weaker assumptions. If in $y^{*}=\exp (\mathbf{x} \boldsymbol{\beta}+u)$ we assume that u is independent of \mathbf{x}, can use Duan's (1983) smearing estimate.
- Uses $E\left(y^{*} \mid \mathbf{x}\right)=E[\exp (u)] \exp (\mathbf{x} \boldsymbol{\beta}) \equiv \tau \exp (\mathbf{x} \boldsymbol{\beta})$ where $\tau \equiv E[\exp (u)]$.
- Let \hat{u}_{i} be OLS residuals from $\log \left(y_{i}\right)$ on \mathbf{x}_{i} using the $y_{i}>0$ data. Let

$$
\hat{\tau}=N^{-1} \sum_{i=1}^{N} \exp \left(\hat{u}_{i}\right)
$$

Then, $\hat{E}(y \mid \mathbf{x}, y>0)=\hat{\tau} \exp (\mathbf{x} \hat{\boldsymbol{\beta}})$, where $\hat{\boldsymbol{\beta}}$ is the OLS estimator of $\log \left(y_{i}\right)$ on \mathbf{x}_{i} using the $y_{i}>0$ subsample.

- More direct approach: just specify

$$
E(y \mid \mathbf{x}, y>0)=\exp (\mathbf{x} \boldsymbol{\beta}),
$$

which contains $y^{*}=\exp (\mathbf{x} \boldsymbol{\beta}+u)$, with u independent of \mathbf{x}, as a special case.

- Use nonlinear least squares or a quasi-MLE in the linear exponential family (such as the Poisson or gamma).
- Given probit estimates of $P(y>0 \mid \mathbf{x})=\Phi(\mathbf{x} \boldsymbol{\gamma})$ and QMLE estimates of $E(y \mid \mathbf{x}, y>0)=\exp (\mathbf{x} \boldsymbol{\beta})$, can easily estimate $E(y \mid \mathbf{x})=\Phi(\mathbf{x} \boldsymbol{\gamma}) \exp (\mathbf{x} \boldsymbol{\beta})$ without additional distributional assumptions.

5. Exponential Type II Tobit Model

- Now allow w and y^{*} to be dependent after conditioning on observed covariates, \mathbf{x}. Seems natural - for example, unobserved factors that affect labor force participation can affect amount of hours.
- Can modify the lognormal hurdle model to allow conditional correlation between w and y^{*}. Call the resulting model the exponential type II Tobit (ET2T) model.
- Traditionally, the type II Tobit model has been applied to missing data problems - that is, where we truly have a sample selection issue. Here, we use it as a way to obtain a flexible corner solution model.
- As with the lognormal hurdle model,

$$
y=1[\mathbf{x} \boldsymbol{\gamma}+v>0] \exp (\mathbf{x} \boldsymbol{\beta}+u)
$$

We use the qualifier "exponential" to emphasize that we should have $y^{*}=\exp (\mathbf{x} \boldsymbol{\beta}+u)$.

- Later we will see why it makes no sense to have $y^{*}=\mathbf{x} \boldsymbol{\beta}+u$, as is often the case in the study of type II Tobit models of sample selection.
- Because v has variance equal to one, $\operatorname{Cov}(u, v)=\rho \sigma$, where ρ is the correlation between u and v and $\sigma^{2}=\operatorname{Var}(u)$.
- Obtaining the log likelihood in this case is a bit tricky. Let $m^{*}=\log \left(y^{*}\right)$, so that $D\left(m^{*} \mid \mathbf{x}\right)$ is $\operatorname{Normal}\left(\mathbf{x} \boldsymbol{\beta}, \sigma^{2}\right)$. Then $\log (y)=m^{*}$ when $y>0$. We still have $P(y=0 \mid \mathbf{x})=1-\Phi(\mathbf{x} \gamma)$.
- To obtain the density of y (conditional on \mathbf{x}) over strictly positive values, we find $f(y \mid \mathbf{x}, y>0)$ and multiply it by $P(y>0 \mid \mathbf{x})=\Phi(\mathbf{x} \boldsymbol{\gamma})$.
- To find $f(y \mid \mathbf{x}, y>0)$, we use the change-of-variables formula $f(y \mid \mathbf{x}, y>0)=g(\log (y) \mid \mathbf{x}, y>0) / y$, where $g(\cdot \mid \mathbf{x}, y>0)$ is the density of m^{*} conditional on $y>0($ and $\mathbf{x})$.
- Use Bayes' rule to write
$g\left(m^{*} \mid \mathbf{x}, w=1\right)=P\left(w=1 \mid m^{*}, x\right) h\left(m^{*} \mid x\right) / P(w=1 \mid \mathbf{x})$ where $h\left(m^{*} \mid \mathbf{x}\right)$ is the density of m^{*} given \mathbf{x}. Then,
$P(w=1 \mid x) g\left(m^{*} \mid x, w=1\right)=P\left(w=1 \mid m^{*}, \mathbf{x}\right) h\left(m^{*} \mid \mathbf{x}\right)$.
- Write $w=1[\mathbf{x} \boldsymbol{\gamma}+v>0]=1[\mathbf{x} \boldsymbol{\gamma}+(\rho / \sigma) u+e>0]$, where $v=(\rho / \sigma) u+e$ and $e \mid \mathbf{x}, u \sim \operatorname{Normal}\left(0,\left(1-\rho^{2}\right)\right)$. Because $u=m^{*}-\mathbf{x} \boldsymbol{\beta}$, we have $P\left(w=1 \mid m^{*}, \mathbf{x}\right)=\Phi\left(\left[\mathbf{x} \boldsymbol{\gamma}+(\rho / \sigma)\left(m^{*}-\mathbf{x} \boldsymbol{\beta}\right)\right]\left(1-\rho^{2}\right)^{-1 / 2}\right)$.
- Further, we have assumed that $h\left(m^{*} \mid \mathbf{x}\right)$ is $\operatorname{Normal}\left(\mathbf{x} \boldsymbol{\beta}, \sigma^{2}\right)$. Therefore, the density of y given \mathbf{x} over strictly positive y is

$$
\left.f(y \mid \mathbf{x})=\Phi\left([\mathbf{x} \boldsymbol{\gamma}+(\rho / \sigma)(y-\mathbf{x} \boldsymbol{\beta})]\left(1-\rho^{2}\right)^{-1 / 2}\right)\right) \phi((\log (y)-\mathbf{x} \boldsymbol{\beta}) / \sigma) /(\sigma y) .
$$

- Combining this expression with the density at $y=0$ gives the log likelihood as

$$
\begin{aligned}
l_{i}(\boldsymbol{\theta})= & 1\left[y_{i}=0\right] \log \left[1-\Phi\left(\mathbf{x}_{i} \boldsymbol{\gamma}\right)\right] \\
+1\left[y_{i}>\right. & 0]\left\{\operatorname { l o g } \left[\Phi\left(\left[\mathbf{x}_{i} \boldsymbol{\gamma}+(\rho / \sigma)\left(\log \left(y_{i}\right)-\mathbf{x}_{i} \boldsymbol{\beta}\right)\right]\left(1-\rho^{2}\right)^{-1 / 2}\right)\right.\right. \\
& \left.+\log \left[\phi\left(\left(\log \left(y_{i}\right)-\mathbf{x}_{i} \boldsymbol{\beta}\right) / \sigma\right)\right]-\log (\sigma)-\log \left(y_{i}\right)\right\} .
\end{aligned}
$$

- Many econometrics packages have this estimator programmed, although the emphasis is on sample selection problems. To use Heckman sample selection software, one defines $\log \left(y_{i}\right)$ as the variable where the data are "missing" when $y_{i}=0$) When $\rho=0$, we obtain the log likelihood for the lognormal hurdle model from the previous subsection.
- For a true missing data problem, the last term in the log likelihood, $\log \left(y_{i}\right)$, is not included. That is because in sample selection problems the log-likelihood function is only a partial log likelihood. Inclusion of $\log \left(y_{i}\right)$ does not affect the estimation problem, but it does affect the value of the log-likelihood function, which is needed to compare across different models.)
- The ET2T model contains the conditional lognormal model from the previous subsection. But the ET2T model with unknown ρ can be poorly identified if the set of explanatory variables that appears in $y^{*}=\exp (\mathbf{x} \boldsymbol{\beta}+u)$ is the same as the variables in $w=1[\mathbf{x} \boldsymbol{\gamma}+v>0]$.
- Various ways to see the potential problem. Can show that

$$
E[\log (y) \mid \mathbf{x}, y>0]=\mathbf{x} \boldsymbol{\beta}+\eta \lambda(\mathbf{x} \boldsymbol{\gamma})
$$

where $\lambda(\cdot)$ is the inverse Mills ratio and $\eta=\rho \sigma$.

- We know we can estimate γ by probit, so this equation nominally identifies β and η. But identification is possible only because $\lambda(\cdot)$ is a nonlinear function, but $\lambda(\cdot)$ is roughly linear over much of its range.
- The formula for $E[\log (y) \mid \mathbf{x}, y>0]$ suggests a two-step procedure, usually called Heckman's method or Heckit. First, $\hat{\gamma}$ from probit of w_{i} on \mathbf{x}_{i}. Second, $\hat{\boldsymbol{\beta}}$ and $\hat{\eta}$ are obtained from OLS of $\log \left(y_{i}\right)$ on $\mathbf{x}_{i}, \lambda\left(\mathbf{x}_{i} \hat{\gamma}\right)$ using only observations with $y_{i}>0$.
- The correlation between $\hat{\lambda}_{i}$ can often be very large, resulting in imprecise estimates of $\boldsymbol{\beta}$ and η.
- Can be shown that the unconditional expectation is

$$
E(y \mid \mathbf{x})=\Phi(\mathbf{x} \boldsymbol{\gamma}+\eta) \exp \left(\mathbf{x} \boldsymbol{\beta}+\sigma^{2} / 2\right)
$$

which is exactly of the same form as in the LH model (with $\rho=0$) except for the presence of $\eta=\rho \sigma$. Because \mathbf{x} always should include a constant, η is not separately identified by $E(y \mid \mathbf{x})$ (and neither is $\sigma^{2} / 2$).

- If we based identification entirely on $E(y \mid \mathbf{x})$, there would be no difference between the lognormal hurdle model and the ET2T model when the same set of regressors appears in the participation and amount equations.
- Still, the parameters are technically identified, and so we can always try to estimate the full model with the same vector \mathbf{x} appearing in the participation and amount equations.
- The ET2T model is more convincing when the covariates determining the participation decision strictly contain those affecting the amount decision. Then, the model can be expressed as

$$
y=1(\mathbf{x} \boldsymbol{\gamma}+v \geq 0) \cdot \exp \left(\mathbf{x}_{1} \boldsymbol{\beta}_{1}+u\right)
$$

where both \mathbf{x} and \mathbf{x}_{1} contain unity as their first elements but \mathbf{x}_{1} is a strict subset of \mathbf{x}. If we write $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$, then we are assuming $\boldsymbol{\gamma}_{2} \neq \mathbf{0}$.

- Given at least one exclusion restriction, we can see from $E[\log (y) \mid \mathbf{x}, y>0]=\mathbf{x}_{1} \boldsymbol{\beta}_{1}+\eta \lambda(\mathbf{x} \boldsymbol{\gamma})$ that $\boldsymbol{\beta}_{1}$ and η are better identified because $\lambda(\mathbf{x} \boldsymbol{\gamma})$ is not an exact function of \mathbf{x}_{1}.
- Exclusion restrictions can be hard to come by. Need something affecting the fixed cost of participating but not affecting the amount.
- Cannot use y rather than $\log (y)$ in the amount equation. In the TNH model, the truncated normal distribution of u at the value $-\mathbf{x} \boldsymbol{\beta}$ ensures that $y^{*}=\mathbf{x} \boldsymbol{\beta}+u>0$.
- If we apply the type II Tobit model directly to y, we must assume (u, v) is bivariate normal and independent of \mathbf{x}. What we gain is that u and v can be correlated, but this comes at the cost of not specifying a proper density because the T2T model allows negative outcomes on y.
- If we apply the "selection" model to y we would have

$$
E(y \mid \mathbf{x}, y>0)=\mathbf{x} \boldsymbol{\beta}+\eta \lambda(\mathbf{x} \boldsymbol{\gamma}) .
$$

- Possible to get negative values for $E(y \mid \mathbf{x}, y>0)$, especially when $\rho<0$. It only makes sense to apply the T2T model to $\log (y)$ in the context of two-part models.
- Example of Two-Part Models: Married Women’s Labor Supply

	(1)	(2)	(3)
Model	Truncated Normal	Lognormal	Exponential
	Hurdle	Hurdle	Type II Tobit
Participation Equation			
nwifeinc	-. 012 (.005)	-. 012 (.005)	-. 0097 (.0043)
educ	. 131 (.025)	. 131 (.025)	. 120 (.022)
exper	. 123 (.019)	. 123 (.019)	. 083 (.017)
exper ${ }^{2}$	-. 0019 (.0006)	-. 0019 (.0006)	-. 0013 (.0005)
age	-. 088 (.015)	-. 088 (.015)	-. 033 (.008)
kidslt6	-. 868 (.119)	-. 868 (.119)	-. 504 (.107)
kidsge6	. 036 (.043)	. 036 (.043)	. 070 (.039)
constant	. 270 (.509)	. 270 (.509)	-. 367 (.448)

	(1)	(2)	(3)
Model	Truncated Normal	Lognormal	Exponential
	Hurdle	Hurdle	Type II Tobit
Amount Equation	hours	\log (hours)	\log (hours)
nwifeinc	. 153 (5.164)	-. 0020 (.0044)	. 0067 (.0050)
educ	-29.85 (22.84)	-. 039 (.020)	-. 119 (.024)
exper	72.62 (21.24)	. 073 (.018)	-. 033 (.020)
exper ${ }^{2}$	-. 944 (.609)	-. 0012 (.0005)	. 0006 (.0006)
age	-27.44 (8.29)	-. 024 (.007)	. 014 (.008)
kidslt6	-484.91 (153.79)	-. 585 (.119)	. 208 (.134)
kidsge6	-102.66 (43.54)	-. 069 (.037)	-. 092 (.043)
constant	2,123.5 (483.3)	7.90 (.43)	8.67 (.50)

	(1)	(2)	(3)
Model	Truncated Normal	Lognormal	Exponential
	Hurdle	Hurdle	Type II Tobit
$\hat{\sigma}$	$850.77(43.80)$	$.884(.030)$	$1.209(.051)$
$\hat{\rho}$	-	-	$-.972(.010)$
Log Likelihood	$-3,791.95$	$-3,894.93$	$-3,877.88$
Number of Women	753	753	753

```
    * use mroz
. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6
```



```
. truncreg hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
(note: 325 obs. truncated)
Truncated regression
Limit: lower = \(0 \quad\) Number of obs \(=\quad 428\)
upper \(=\quad\) +inf \(\quad\) Wald chi2(7) \(=59\).
Log likelihood = -3390.6476
```

Prob > chi2 $=0.0000$

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline hours & Coef & Std. Err & z & \(\mathrm{P}>|\mathrm{z}|\) & [95\% Con & Interval \\
\hline nwifeinc & . 1534399 & 5.164279 & 0.03 & 0.976 & -9.968361 & 10.27524 \\
\hline educ & -29.85254 & 22.83935 & -1.31 & 0.191 & -74.61684 & 14.91176 \\
\hline exper & 72.62273 & 21.23628 & 3.42 & 0.001 & 31.00039 & 114.2451 \\
\hline expersq & -. 9439967 & . 6090283 & -1.55 & 0.121 & -2.13767 & . 2496769 \\
\hline age & -27.44381 & 8.293458 & -3.31 & 0.001 & -43.69869 & -11.18893 \\
\hline kidslt6 & -484.7109 & 153.7881 & -3.15 & 0.002 & -786.13 & -183.2918 \\
\hline kidsge6 & -102.6574 & 43.54347 & -2.36 & 0.018 & -188.0011 & -17.31379 \\
\hline _cons & 2123.516 & 483.2649 & 4.39 & 0.000 & 1176.334 & 3070.697 \\
\hline /sigma & 850.766 & 43.80097 & 19.42 & 0.000 & 764.9177 & 936.6143 \\
\hline
\end{tabular}
```

* log likelihood for Cragg truncated normal hurdle model
. di -3390.6476 - 401.30219
-3791.9498
* A trick to get the log likelihood for the lognormal hurdle model:
. tobit lhours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)

Tobit regression				Number of obs LR chi2(7) Prob > chi2 Pseudo R2		$\begin{gathered} 428 \\ 77 . \\ 0.0000 \end{gathered}$
Log likelihood =	-554.56647					0.0653
lhours	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval
nwifeinc	-. 0019676	. 0044019	-0.45	0.655	-. 01062	. 0066848
educ	-. 0385626	. 02002	-1.93	0.055	-. 0779142	. 0007891
exper	. 073237	. 0177323	4.13	0.000	. 0383821	. 1080919
expersq	-. 001233	. 0005328	-2.31	0.021	-. 0022803	-. 0001858
age	-. 0236706	. 0071799	-3.30	0.001	-. 0377836	-. 0095576
kidslt6	-. 585202	. 1174928	-4.98	0.000	-. 8161477	-. 3542563
kidsge6	-. 0694175	. 0369849	-1.88	0.061	-. 1421156	. 0032806
_cons	7.896267	. 4220778	18.71	0.000	7.066625	8.72591
/sigma \|	. 884067	. 0302167			. 8246725	. 9434614
Obs. summary:	$\begin{array}{r} 0 \\ 428 \\ 0 \end{array}$	left-cens uncens right-cens		vations vations vations		

. * log likelihood for lognormal hurdle:
. sum lhours

| Variable \| | Obs | Mean | Std. Dev. | Min |
| :---: | :---: | :---: | :---: | :---: | Max

. di -401.30219 - 554.56647 - 428*6.86696
-3894.9275
. * Now get the llf for each nonzero observation to compute the Vuong
. * test for the truncated normal versus lognormal.
. predict xb1
(option xb assumed; fitted values)
. gen llf1 $=\log ($ normalden((lhours - xb1)/.88407)) - $\log (.88407)$ - lhours (325 missing values generated)

Truncated regression						
upp					Wald chi2(7)	59.
Log likelihood	-3390.64				Prob > chi2	$=0.0000$
hours	Coef.	Std. Err	Z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf.	Interval
nwifeinc	. 1534399	5.164279	0.03	0.976	-9.968361	10.27524
educ	-29.85254	22.83935	-1.31	0.191	-74.61684	14.91176
exper	72.62273	21.23628	3.42	0.001	31.00039	114.2451
expersq	-. 9439967	. 6090283	-1.55	0.121	-2.13767	. 2496769
age	-27.44381	8.293458	-3.31	0.001	-43.69869	-11.18893
kidslt6	-484.7109	153.7881	-3.15	0.002	-786.13	-183.2918
kidsge6	-102.6574	43.54347	-2.36	0.018	-188.0011	-17.31379
_cons	2123.516	483.2649	4.39	0.000	1176.334	3070.697
/sigma	850.766	43.80097	19.42	0.000	764.9177	936.6143

. predict xb2, xb
. gen u2 = hours - xb2
. gen llf2 $=\log ($ normalden(u2/ 850.766)) $-\log (850.766)$

- log(normal(xb2/ 850.766))
. replace llf2 $=$. if hours $==0$
(325 real changes made, 325 to missing)
. gen diff = llf2 - llf1
(325 missing values generated)
. reg diff

Source	SS	df	MS	Number of obs =	428
				F (0, 427)	0.
Model	0	0		Prob > F	
Residual	203.969251	427	. 477679746	R-squared =	0.0000
				Adj R-squared	0.0000
Total	203.969251	427	. 477679746	Root MSE	. 69114

. * The Vuong test strongly rejects the lognormal in favor of the truncated . * in terms of fit.

```
. heckman lhours nwifeinc educ exper expersq age kidslt6 kidsge6,
``` select(inlf = nwifeinc educ exper expersq age kidslt6 kidsge6)
\begin{tabular}{ll}
Iteration 0: & log likelihood \(=-956.85771\) \\
Iteration 1: & \(\log\) likelihood \(=-952.20425\) \\
Iteration 2: & \(\log\) likelihood \(=-940.24444\) \\
Iteration 3: & \(\log\) likelihood \(=-938.83566\) \\
Iteration 4: & \(\log\) likelihood \(=-938.82081\) \\
Iteration 5: & \(\log\) likelihood \(=-938.8208\)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline inlf & & & & & & \\
\hline nwifeinc & -. 0096823 & . 0043273 & -2.24 & 0.025 & -. 0181637 & -. 001201 \\
\hline educ & . 119528 & . 0217542 & 5.49 & 0.000 & . 0768906 & . 1621654 \\
\hline exper & . 0826696 & . 0170277 & 4.86 & 0.000 & . 049296 & . 1160433 \\
\hline expersq & -. 0012896 & . 0005369 & -2.40 & 0.016 & -. 002342 & -. 0002372 \\
\hline age & -. 0330806 & . 0075921 & -4.36 & 0.000 & -. 0479609 & -. 0182003 \\
\hline kidslt6 & -. 5040406 & . 1074788 & -4.69 & 0.000 & -. 7146951 & -. 293386 \\
\hline kidsge6 & . 0698201 & . 0387332 & 1.80 & 0.071 & -. 0060955 & . 1457357 \\
\hline _cons & -. 3656166 & . 4476569 & -0.82 & 0.414 & -1.243008 & . 5117748 \\
\hline /athrho & -2.131542 & . 174212 & -12.24 & 0.000 & -2.472991 & -1.790093 \\
\hline /lnsigma & . 1895611 & . 0419657 & 4.52 & 0.000 & . 1073099 & . 2718123 \\
\hline rho & -. 9722333 & . 0095403 & & & -. 9858766 & -. 9457704 \\
\hline sigma & 1.208719 & . 0507247 & & & 1.113279 & 1.312341 \\
\hline lambda & -1.175157 & . 0560391 & & & -1.284991 & -1.065322 \\
\hline LR test of in & . eqns. (r & - 0) : & 2(1) & 34. & Prob > ch & \(=0.0000\) \\
\hline
\end{tabular}
. sum lhours
\begin{tabular}{ccccc}
Variable | & Obs & Mean & Std. Dev. & Min
\end{tabular} Max
. * log likelihood for the "selection" model:
. di -938.8208 - 428*6.86696
-3877. 8797```

