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1. The Basic Methodology

∙ Standard case: outcomes are observed for two groups for two time

periods. One of the groups is exposed to a treatment in the second

period but not in the first period. The second group is not exposed to

the treatment during either period. Structure can apply to repeated cross

sections or panel data.

∙With repeated cross sections, let A be the control group and B the

treatment group. Write

y  0  1dB  0d2  1d2  dB  u,     (1)

where y is the outcome of interest.
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∙ dB captures possible differences between the treatment and control

groups prior to the policy change. d2 captures aggregate factors that

would cause changes in y over time even in the absense of a policy

change. The coefficient of interest is 1.

∙ The difference-in-differences (DD) estimate is

̂1  ȳB,2 − ȳB,1 − ȳA,2 − ȳA,1.     (2)

Inference based on moderate sample sizes in each of the four groups is

straightforward, and is easily made robust to different group/time

period variances in regression framework.

3



∙ Can refine the definition of treatment and control groups. Example:

change in state health care policy aimed at elderly. Could use data only

on people in the state with the policy change, both before and after the

change, with the control group being people 55 to 65 (say) and and the

treatment group being people over 65. This DD analysis assumes that

the paths of health outcomes for the younger and older groups would

not be systematically different in the absense of intervention.
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∙ Instead, use the same two groups from another (“untreated”) state as

an additional control. Let dE be a dummy equal to one for someone

over 65 and dB be the dummy for living in the “treatment” state:

y  0  1dB  2dE  3dB  dE  0d2
 1d2  dB  2d2  dE  3d2  dB  dE  u

    (3)
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∙ The OLS estimate ̂3 is

̂3  ȳB,E,2 − ȳB,E,1 − ȳB,N,2 − ȳB,N,1

− ȳA,E,2 − ȳA,E,1 − ȳA,N,2 − ȳA,N,1

    (4)

where the A subscript means the state not implementing the policy and

the N subscript represents the non-elderly. This is the

difference-in-difference-in-differences (DDD) estimate.

∙ Can add covariates to either the DD or DDD analysis to (hopefully)

control for compositional changes. Even if the intervention is

independent of observed covariates, adding those covariates may

improve precision of the DD or DDD estimate.
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2. How Should We View Uncertainty in DD Settings?

∙ Standard approach: all uncertainty in inference enters through

sampling error in estimating the means of each group/time period

combination. Long history in analysis of variance.

∙ Recently, different approaches have been suggested that focus on

different kinds of uncertainty – perhaps in addition to sampling error in

estimating means. Bertrand, Duflo, and Mullainathan (2004), Donald

and Lang (2007), Hansen (2007a,b), and Abadie, Diamond, and

Hainmueller (2007) argue for additional sources of uncertainty.

∙ In fact, in the “new” view, the additional uncertainty is often assumed

to swamp the sampling error in estimating group/time period means.
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∙ One way to view the uncertainty introduced in the DL framework –

and a perspective explicitly taken by ADH – is that our analysis should

better reflect the uncertainty in the quality of the control groups.

∙ ADH show how to construct a synthetic control group (for California)

using pre-training characteristics of other states (that were not subject

to cigarette smoking restrictions) to choose the “best” weighted average

of states in constructing the control.
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∙ Example from Meyer, Viscusi, and Durbin (1995) on estimating the

effects of benefit generosity on length of time a worker spends on

workers’ compensation. MVD have the standard DD before-after

setting.
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. reg ldurat afchnge highearn afhigh if ky, robust

Linear regression Number of obs  5626
F( 3, 5622)  38.
Prob  F  0.0000
R-squared  0.0207
Root MSE  1.2692

----------------------------------------------------------------------------
| Robust

ldurat | Coef. Std. Err. t P|t| [95% Conf. Interval
---------------------------------------------------------------------------

afchnge | .0076573 .0440344 0.17 0.862 -.078667 .0939817
highearn | .2564785 .0473887 5.41 0.000 .1635785 .3493786

afhigh | .1906012 .068982 2.76 0.006 .0553699 .3258325
_cons | 1.125615 .0296226 38.00 0.000 1.067544 1.183687

----------------------------------------------------------------------------
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. reg ldurat afchnge highearn afhigh if mi, robust

Linear regression Number of obs  1524
F( 3, 1520)  5.
Prob  F  0.0008
R-squared  0.0118
Root MSE  1.3765

----------------------------------------------------------------------------
| Robust

ldurat | Coef. Std. Err. t P|t| [95% Conf. Interval
---------------------------------------------------------------------------

afchnge | .0973808 .0832583 1.17 0.242 -.0659325 .2606941
highearn | .1691388 .1070975 1.58 0.114 -.0409358 .3792133

afhigh | .1919906 .1579768 1.22 0.224 -.117885 .5018662
_cons | 1.412737 .0556012 25.41 0.000 1.303674 1.5218

----------------------------------------------------------------------------
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. reg ldurat afchnge highearn afhigh male married age head neck upextr trunk
lowextr occdis manuf construc if ky, robust

Linear regression Number of obs  5347
F( 14, 5332)  18.
Prob  F  0.0000
R-squared  0.0452
Root MSE  1.2476

----------------------------------------------------------------------------
| Robust

ldurat | Coef. Std. Err. t P|t| [95% Conf. Interval
---------------------------------------------------------------------------

afchnge | .0130565 .0444454 0.29 0.769 -.0740747 .1001876
highearn | .1530299 .0506912 3.02 0.003 .0536543 .2524054

afhigh | .2244972 .0696846 3.22 0.001 .0878869 .3611075
male | -.0560689 .0446726 -1.26 0.209 -.1436455 .0315077

married | .0775528 .0390977 1.98 0.047 .0009054 .1542003
age | .0066663 .0014459 4.61 0.000 .0038318 .0095008

head | -.503178 .1027703 -4.90 0.000 -.7046498 -.3017062
neck | .2962081 .1435099 2.06 0.039 .01487 .5775461

upextr | -.1655011 .0458495 -3.61 0.000 -.2553849 -.0756172
trunk | .1294822 .0596328 2.17 0.030 .0125775 .246387

lowextr | -.1097762 .0477096 -2.30 0.021 -.2033066 -.0162458
occdis | .2620801 .2197785 1.19 0.233 -.1687757 .6929359

manuf | -.16232 .040204 -4.04 0.000 -.2411364 -.0835036
construc | .1107367 .049864 2.22 0.026 .0129829 .2084906

_cons | 1.01803 .0718698 14.16 0.000 .8771354 1.158924
----------------------------------------------------------------------------
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3. The Donald and Lang Approach and an MD Approach

Background: Inference with “Cluster” Samples

∙ For each group or cluster g, let ygm,xg,zgm : m  1, . . . ,Mg be

the observable data, where Mg is the number of units in cluster g, ygm is

a scalar response, xg is a 1  K vector containing explanatory variables

that vary only at the group level, and zgm is a 1  L vector of covariates

that vary within (as well as across) groups.
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∙ The linear model with an additive cluster effect and unit-specific

unobservables is

ygm    xg  zgm  cg  ugm

for m  1, . . . ,Mg, g  1, . . . ,G.
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∙ If we can random sample a large number of groups or clusters, G,

from a large population of relatively small clusters (with sizesMg),

inference is straightforward, even for , provided we assume

Evgm|xg,zgm  0

where vgm  cg  ugm. Just use pooled OLS: then pooled OLS

estimator of ygm on 1,xg,zgm,m  1, . . . ,Mg;g  1, . . . ,G. Consistent

for  ≡ , ′, ′′ (as G →  with Mg fixed) and G -asymptotically

normal.
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∙ Robust variance matrix is needed to account for correlation within

clusters or heteroskedasticity in Varvgm|xg,zgm, or both. Write Wg as

the Mg  1  K  L matrix of all regressors for group g. Then the

1  K  L  1  K  L variance matrix estimator is

∑
g1

G

Wg
′ Wg

−1

∑
g1

G

Wg
′ v̂gv̂g′ Wg ∑

g1

G

Wg
′ Wg

−1

where v̂g is the Mg  1 vector of pooled OLS residuals for group g.

This “sandwich” estimator is now computed routinely using “cluster”

options.
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∙ Can use the random effects estimator, too, to exploit the presence of

cg, which must cause within-cluster correlation. But one should still use

fully robust inference via a “sandwich” estimator. (Might have

heteroskedasticity in variances; might have other sources of cluster

correlation due to neglected random slopes.)

∙ Even if use fixed effects to estimate just , still use fully robust

inference (just like with panel data to account for neglected serial

correlation).
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∙ Recent work by Hansen (2007, Journal of Econometrics): Can use the

usual “cluster-robust” inference even if the group sizes, Mg, are

comparable in magnitude to the number of groups, G, provided each is

not “too small.” (About G ≈ Mg ≈ 30 seems to do it.) So, the so-called

“Moulton problem” where, say, we have G  50 U.S. states and not too

many individuals per state has a solution.
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∙ However, when Mg is the large dimension, the usual cluster-robust

inference does not work. (For example,

G  10 hospitals have been sampled with several hundred patients per

hospital. If the explanatory variable of interest varies only at the

hospital level, tempting to use pooled OLS with cluster-robust

inference. But we have no theoretical justification for doing so, and

reasons to expect it will not work well.
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∙ If the explanatory variables of interest vary within group, FE is

attractive. First, allows cg to be arbitrarily correlated with the zgm.

Second, with large Mg, can treat the cg as parameters to estimate –

because we can estimate them precisely – and then assume that the

observations are independent across m (as well as g). This means that

the usual inference is valid, perhaps with adjustment for

heteroskedasticity.
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∙ But what if our interest is in coefficients on the group-level

covariates, xg, and G is small with large Mg?

∙When G is small and each Mg is large, we often have a different

sampling scheme: large random samples are drawn from different

segments of a population. Except for the relative dimensions of G and

Mg, the resulting data set is essentially indistinguishable from a data set

obtained by sampling entire clusters.
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∙ Enter Donald and Lang (2007). DL treat the parameters associated

with the different groups as outcomes of random draws.

∙ Simplest case: a single regressor that varies only by group:

ygm    xg  cg  ugm
 g  xg  ugm.

∙ Think of the very simple case where xg is a treatment indicator at the

group level.

∙ DL focus on the first equation, where cg is assumed to be independent

of xg with zero mean.
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∙ In other words, the DL criticism of the standard

difference-of-differences approach has nothing to do with whether the

DD quasi-experiment is a good one or not. It is entirely about inference

on  with small G, “large” Mg.

∙ The problem, as set up by DL, is the cg in the error term.

∙ Cannot use pooled OLS standard errors which ignore cg and cannot

use clustering because the asymptotics do not work. And cannot use

group fixed effects.
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∙ DL propose studying the regression in averages:

ȳg    xg  v̄g,g  1, . . . ,G.

If we add some strong assumptions, we can perform inference on using

standard methods. In particular, assume thatMg  M for all g, cg|xg

~Normal0,c2 and ugm|xg,cg  Normal0,u2. Then v̄g is independent

of xg and v̄g  Normal0,c2  u2/M. Because we assume

independence across g, the equation in averages satisfies the classical

linear model assumptions.
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∙ So, we can just use the “between” regression

ȳg on 1,xg,g  1, . . . ,G;

identical to pooled OLS across g and m with same group sizes.

∙ Conditional on the xg, ̂ inherits its distribution from

v̄g : g  1, . . . ,G, the within-group averages of the composite errors.

∙We can use inference based on the tG−2 distribution to test hypotheses

about , provided G  2.
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∙ If G is small, the requirements for a significant t statistic using the

tG−2 distribution are much more stringent then if we use the

tM1M2...MG−2 distribution.

∙ Using OLS on the averages is not the same as using cluster-robust

standard errors for pooled OLS. Those are not justified and we would

use the wrong df in the t distribution.

∙We can apply the DL method without normality of the ugm if the

group sizes are large because Varv̄g  c2  u2/Mg so that ūg is a

negligible part of v̄g. But we still need to assume cg is normally

distributed.
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∙ If zgm appears in the model, then we can use the averaged equation

ȳg    xg  z̄g  v̄g,g  1, . . . ,G,

provided G  K  L  1.
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∙ If cg is independent of xg, z̄g with a homoskedastic normal

distribution, and the group sizes are large, inference can be carried out

using the tG−K−L−1 distribution. Regressions on aggregate averages are

reasonably common, at least as a check on results using disaggregated

data, but usually with larger G then just a handful.
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∙ Now the conundrum: If G  2, should we give up? Suppose xg is

binary, indicating treatment and control (g  2 is the treatment, g  1

is the control). The DL estimate of  is the usual one: ̂  ȳ2 − ȳ1. But

in the DL setting, we cannot do inference (there are zero df). So, the

DL setting rules out the standard comparison of means.
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∙ Can we still obtain inference on estimated policy effects using

randomized or quasi-randomized interventions when the policy effects

are just identified? Not according the DL approach.

∙ If ygm  Δwgm – the change of some variable over time – then the

simplest model

Δwgm    xg  cg  ugm,

using the DL approach, where xg is a binary treatment estimator, leads

to a difference in mean changes, ̂  Δw2 − Δw1. This approach has

been a workhorse in the quasi-experimental literature [Card and

Krueger (1994), for example.]
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∙ According to DL, the comparison of of mean changes using the usual

formulas from statistics (possibly allowing for heteroskedasticity)

produces the wrong inference, and there is no available inference. The

estimate is the same as the usual DD estimator, but there is no way to

estimate its sampling variance in the DL scheme.

∙ This is always true when the treatment effect are just identified.
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∙ Even when DL approach applies, should we? Suppose G  4 with

two control groups (x1  x2  0) and two treatment groups

x3  x4  1. DL involves the OLS regression ȳg on 1,xg,

g  1, . . . , 4; inference is based on the t2 distribution. Can show

̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2,

which shows ̂ is approximately normal (for most underlying

population distributions) even with moderate group sizes Mg. In effect,

the DL approach rejects usual inference based on means from large

samples because it may not be the case that 1  2 and 3  4.
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∙ Could just define the treatment effect as

  3  4/2 − 1  2/2.

∙ The expression ̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2 hints at a different way

to view the small G, large Mg setup. We estimated two parameters, 

and , given four moments that we can estimate with the data. The OLS

estimates can be interpreted as minimum distance estimates that impose

the restrictions 1  2   and 3  4    . If we use the 4  4

identity matrix as the weight matrix, we get ̂ and ̂  ȳ1  ȳ2/2.
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∙With large group sizes, and whether or not G is especially large, we

can put the problem into an MD framework, as done by Loeb and

Bound (1996), who had G  36 cohort-division groups and many

observations per group.

For each group g, write

ygm  g  zgmg  ugm.

Again, random sampling within group and independence across groups.

OLS estimates withing group are Mg -asymptotically normal.
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∙ The presence of xg can be viewed as putting restrictions on the

intercepts:

g    xg,g  1, . . . ,G,

where we now think of xg as fixed, observed attributes of

heterogeneous groups. With K attributes we must have G ≥ K  1 to

determine  and . In the first stage, obtain ̂g, either by group-specific

regressions or pooling to impose some common slope elements in g.
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Let V̂ be the G  G estimated (asymptotic) variance of ̂. Let X be the

G  K  1 matrix with rows 1,xg. The MD estimator is

̂  X′V̂−1X−1X ′V̂−1
̂

The asymptotics are as each group size gets large, and ̂ has an

asymptotic normal distribution; its estimated asymptotic variance is

X′V̂−1X−1. When separate group regressions are used, the ̂g are

independent and V̂ is diagonal.

∙ Estimator looks like “GLS,” but inference is with G (number of rows

in X) fixed with Mg growing.
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∙ Can test the overidentification restrictions. If reject, can go back to

the DL approach or find more elements to put in xg. With large group

sizes, can analyze

̂g    xg  cg,g  1, . . . ,G

as a classical linear model because ̂g  g  OpMg
−1/2, provided cg is

homoskedastic, normally distributed, and independent of xg.
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∙ In the case of policy analysis, we can just define policy effects in

terms of the g, which have been estimated using large random

samples, and use the usual kind of inference. The policy effects are just

linear combinations of the g.

∙ The case of small G, small Mg is very difficult, and one is forced to

use a small-sample analysis on the averages, as in DL. But it can be

very sensitive to nonnormality and heteroskedasticity (say, if y is

binary).
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4. Multiple Groups and Time Periods

∙With many time periods and groups, setup in BDM (2004) and

Hansen (2007a) is useful. With random samples at the individual level

for each g, t pair,

yigt  t  g  xgt  zigtgt  vgt  uigt,

i  1, . . . ,Mgt,

where i indexes individual, g indexes group, and t indexes time.
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∙ Full set of time effects, t, full set of group effects, g, group/time

period covariates (policy variabels), xgt, individual-specific covariates,

zigt, unobserved group/time effects, vgt, and individual-specific errors,

uigt. Interested in .
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∙ Can write

yigt  gt  zigtgt  uigt, i  1, . . . ,Mgt;

a model at the individual level where intercepts and slopes are allowed

to differ across all g, t pairs. Then, think of gt as

gt  t  g  xgt  vgt.

Think of (7) as a model at the group/time period level.
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∙ As discussed by BDM, a common way to estimate and perform

inference in the individual-level equation

yigt  t  g  xgt  zigt  vgt  uigt

is to ignore vgt, so the individual-level observations are treated as

independent. When vgt is present, the resulting inference can be very

misleading.

∙ BDM and Hansen (2007a) allow serial correlation in

vgt : t  1, 2, . . . ,T but assume independence across g.

∙We cannot replace t  g a full set of group/time interactions

because that would eliminate xgt.
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∙ If we view  in gt  t  g  xgt  vgt as ultimately of interest –

which is usually the case because xgt contains the aggregate policy

variables – there are simple ways to proceed. We observe xgt, t is

handled with year dummies,and g just represents group dummies. The

problem, then, is that we do not observe gt.

∙ But we can use OLS on the individual-level data to estimate the gt in

yigt  gt  zigtgt  uigt, i  1, . . . ,Mgt

assuming Ezigt′ uigt  0 and the group/time period sample sizes, Mgt,

are reasonably large.
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∙ Sometimes one wishes to impose some homogeneity in the slopes –

say, gt  g or even gt   – in which case pooling across groups

and/or time can be used to impose the restrictions.

∙ However we obtain the ̂gt , proceed as if Mgt are large enough to

ignore the estimation error in the ̂gt; instead, the uncertainty comes

through vgt in gt  t  g  xgt  vgt.

∙ The minimum distance (MD) approach (see cluster sample notes)

effectively drops vgt and views gt  t  g  xgt as a set of

deterministic restrictions to be imposed on gt. Inference using the

efficient MD estimator uses only sampling variation in the ̂gt.
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∙ Here, proceed ignoring estimation error, and act as if

̂gt  t  g  xgt  vgt.

∙We can apply the BDM findings and Hansen (2007) results directly to

this equation. Namely, if we estimate this equation by OLS – which

means full year and group effects, along with xgt – then the OLS

estimator has satisfying large-sample properties as G and T both

increase, provided vgt : t  1, 2, . . . ,T is a weakly dependent time

series for all g.
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∙ Simulations in BDM and Hansen (2007) indicate cluster-robust

inference works reasonably well when vgt follows a stable AR(1)

model and G is moderately large.

∙ If the Mgt are not large, might worry about ignoring the estimation

error in the ̂gt. Instead, aggregate over individuals:

ȳgt  t  g  xgt  z̄gt  vgt  ūgt,
t  1, . . ,T,g  1, . . . ,G.

Can estimate this by FE and use fully robust inference (to account for

time series dependence) because the composite error, rgt ≡ vgt  ūgt,

is weakly dependent.
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∙ The Donald and Lang (2007) approach applies in the current setting

by using finite sample analysis applied to the previous pooled

regression. However, DL assume that the errors vgt are uncorrelated

across time, and so, even though for small G and T it uses small

degrees-of-freedom in a t distribution, it does not account for

uncertainty due to serial correlation in vgt.
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5. Semiparametric and Nonparametric Approaches

∙ As in Heckman, Ichimura, and Todd and Abadie (2005), first

consider estimating

att  EY11 − Y10|W  1,

where Ytw the denotes counterfactual outcome with treatment level w

in time period t. Because no units are treated prior to the initial time

period, W  1 means an intervention prior to the second time period.
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∙ For estimating att, the key unconfoundedness assumpton is

EY10 − Y00|X,W  EY10 − Y00|X,

so that, conditional on X, treatment status is not related to the gain over

time in the absense of treatment. For att, need the partial overlap

assumption

PW  1|X  x  1, all x.

50



∙ As in HIT, can use regression to first estimate

EY11 − Y10|X,W  1. This expectation is identified under the

previous unconfoundedness and overlap assumptions. Let

Y1  1 − W  Y10  W  Y11 be the observed response for t  1,

and let Y0  Y00  Y01 be the response at t  0. Then can show

(see lecture notes at provided links)

EY1|X,W  1 − EY1|X,W  0
− EY0|X,W  1 − EY0|X,W  0

 EY11 − Y10|X,W  1.
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∙ Each of the four expected values is estimable given random samples

from the two time periods. For example, we can use flexible parametric

models, or even nonparametric estimation, to estimate EY1|X,W  1

using the data on those receiving treatment at t  1. So, use the data for

t  0 to estimate EY0|X,W  1 − EY0|X,W  0 – just as we would

in the usual regression adjustment – and use the t  1 data to estimate

EY1|X,W  1 − EY1|X,W  0.
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∙ Analysis for

ate  EY11 − Y10

is similar under the stonger overlap assumption and we add to the

original unconfoundedness assumption

EY11 − Y01|X,W  EY11 − Y01|X,

which means that treatment status is unconfounded with respect to the

gain under treatment, too.
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∙ Then

EY1|X,W  1 − EY1|X,W  0
− EY0|X,W  1 − EY0|X,W  0

 EY11 − Y10|X,

and so now the ATE conditional on X can be estimated using the

estimates of the conditional means for the four time period/treatment

status groups.
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∙ The regression-adjustment estimate of ate has the general form

̂ate,reg  N1
−1∑

i1

N1

̂11Xi − ̂10Xi − N0
−1∑

i1

N0

̂01Xi − ̂00Xi,

where ̂twx is the estimated regression function for time period t and

treatment status w, N1 is the total number of observations for t  1, and

N0 is the total number of observations for time period zero.
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∙ Strictly speaking, the previous formula leads to ate (after averaging

out the distribution of X) only when the distribution of the covariates

does not change over time. Of course, one reason to include covariates

is to allow for compositional changes in the relevant populations over

time. The usual DD approach, based on linear regression, avoids the

issue by assuming the treatment effect does not depend on the

covariates.

∙ The HIT approach allows for treatment effects to differ by X, but the

two averages in practice are necessarily for different time periods.
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∙ Abadie (2005) shows how propensity score weighting can recover att
with repeated cross sections and, not surprisingly, also requires a

stationarity condition. For att,

̂att,ps  N1
−1∑

i1

N1
Wi − p̂XiYi1
̂1 − p̂Xi

− N0
−1∑

i1

N0
Wi − p̂XiYi0
̂1 − p̂Xi

,

where Yi1 : i  1, . . . . ,N1 are the data for t  1 and

Yi0 : i  1, . . . . ,N0 are the data for t  0.

57



∙ Straightforward interpretation: The first average is the standard

propensity score weighted estimator if we used only t  1 and assumed

unconfoundedness in levels while the second is the same but for t  0.

This is why it, like the HIT estimator, is a DD estimator.

∙ As in the HIT case, we really are replacing Xi with Xi1 in the first sum

and Xi with Xi0 in the second sum.
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∙ Athey and Imbens (2006) generalize the standard DD model. Let the

two time periods be t  0 and 1 and label the two groups g  0 and 1.

Let Yi0 be the counterfactual outcome in the absense of intervention

and Yi1 the counterfactual outcome with intervention. AI take the

view that the time period, Ti, is drawn randomly, too. The key

representation is

Yi0  h0Ui,Ti

where Ui is unobserved. Key assumption is

h0u, t strictly increasing in u for t  0, 1

∙ Yi0  h0Ui,Ti incorporates the idea that the outcome of an
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individual with Ui  u will be the same in a given time period,

irrespective of group membership. Strict monotonicity assumption rules

out discrete responses (but can get bounds under weak monotonicity;

with additional assumptions, can recover point identification).

∙ The distribution of Ui is allowed to vary across groups, but not over

time within groups:

DUi|Ti,Gi  DUi|Gi.
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∙ Standard DD model takes

h0u, t  u    t

and

Ui    Gi  Vi, Vi  Gi,Ti
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∙ Athey and Imbens call the extension of the usual DD model the

changes-in-changes (CIC) model. They show not only how to recover

the average treatment effect, but also that the distribution of the

counterfactual outcome conditional on intervention, that is

DYi0|Gi  1,Ti  1.

∙ Uses nonparametric estimation of cumulative distribution functions

for pairs g, t pair.
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∙ For example, the average treatment effect is estimated as

̂CIC  N11
−1∑

i1

N11

Y11,i − N10
−1∑

i1

N10

F̂01
−1F̂00Y10, i,

for consistent estimators F̂00 and F̂01 of the cdfs for the control groups

in the initial and later time periods, respectively.

63



6. Unit-Level Panel Data

∙ “Old-fashioned” approach. Let wit be a binary indicator, which is

unity if unit i participates in the program at time t. Consider

yit    d2t  wit  ci  uit, t  0, 1,

where d1t  1 if t  1 and zero otherwise, ci is an observed effect  is

the treatment effect. Remove ci by first differencing:

yi1 − yi0    wi1 − wi0  ui1 − ui0
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∙ Apply OLS on the first differenced equation

Δyi    Δwi  Δui

under EΔwiΔui  0.

∙ If wi0  0 for all i – no intervention prior to the initial time period – ,

the OLS estimate is

̂FD  Δȳtreat − Δȳcontrol,

which is a DD estimate except that we different the means of the same

units over time.
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∙ It is not more general to regress yi1 on 1,wi1,yi0, i  1, . . . ,N, even

though this appears to free up the coefficient on yi0. Why? With

wi0  0 we can write

yi1    wi1  yi0  ui1 − ui0.

Now, if Eui1|wi1,ci,ui0  0 then ui1 is uncorrelated with yi0, and yi0
and ui0 are correlated. So yi0 is correlated with ui1 − ui0  Δui.
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∙ In fact, if we add the standard no serial correlation assumption,

Eui0ui1|wi1,ci  0, and write the linear projection

wi1  0  1yi0  ri1, then can show that

plim̂LDV    1u02 /r1
2 

where

1  Covci,wi1/c2  u02 .

∙ For example, if wi1 indicates a job training program and less

productive workers are more likely to participate (1  0), then the

regression yi1 (or Δyi1) on 1, wi1, yi0 underestimates the effect.
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∙ If more productive workers participate, regressing Δyi1 on 1, wi1, yi0
overestimates the effect of job training.

∙ Now consider the other way around. Following Angrist and Pischke

(2009), suppose we use the FD estimator when, in fact,

unconfoundedness of treatment holds conditional on yi1 (and the

treatment effect is constant). Then we can write

yi1    wi1  yi0  ei1
Eei1  0, Covwi1,ei1  Covyi0,ei1  0.
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∙Write the equation as

Δyi1    wi1   − 1yi0  ei1
≡   wi1  yi0  ei1

Then, of course, the FD estimator generally suffers from omitted

variable bias if  ≠ 1. We have

plim̂FD     Covwi1,yi0
Varwi1

∙ If   0 (  1) and Covwi1,yi0  0 – workers observed with low

first-period earnings are more likely to participate – the plim̂FD  ,

and so FD overestimates the effect.
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∙ Generally, it is possible to derive the standard unobserved effects

models – leading to the basic estimation methods of fixed effects and

extensions – in a counterfactual setting. And this is with general

patterns of treatment. For example, for each i, t, let yit1 and yit0

denote the counterfactual outcomes, and assume there are no

covariates. Unconfoundedness, conditional on unobserved

heterogeneity, can be stated as

Eyit0|wi,ci  Eyit0|ci
Eyit1|wi,ci  Eyit1|ci,

where wi  wi1, . . . ,wiT is the time sequence of all treatments.

70



∙ Suppose the gain from treatment only depends on t,

Eyit1|ci  Eyit0|ci  t.

Then

Eyit|wi,ci  Eyit0|ci  twit

where yi1  1 − wityit0  wityit1.
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∙ If we further assume

Eyit0|ci  t0  ci0,

then

Eyit|wi,ci  t0  ci0  twit,

an estimating equation that leads to FE or FD (often with t  .
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∙ If add strictly exogenous covariates and allow the gain from treatment

to depend on xit and an additive unobserved effect ai, get

Eyit|wi,xi,ci  t0  twit  xit0

 wit  xit −  t  ci0  ai  wit,

a correlated random coefficient model because the coefficient on wit is

t  ai. Can eliminate ai (and ci0. Or, with t  , can “estimate” the

i    ai and then use

̂  N−1∑
i1

N

̂i.
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∙ And so on. Can get random trend models, with git, say. Then, can

difference followed by a second difference or fixed effects estimation

on the first differences. With t  ,

Δyit   t  Δwit  Δxit0  Δwit  xit −  t  ai  Δwit  gi  Δuit.

∙Might ignore aiΔwit, using the results on the robustness of the FE

estimator in the presence of certain kinds of random coefficients, or,

again, estimate i    ai for each i and form the average.
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∙ Altonji and Matzkin (2005), Wooldridge (2005) can be used without

specifying functional forms. If we assume unconfoundedness contional

on ci,

EYitg|Wi,ci  htgci

The treatment effect for unit i in period t is ht1ci − ht0ci, and the

average treatment effect is

t  Eht1ci − ht0ci.

∙ Suppose

Dci|Wi1, . . . ,WiT  Dci|W̄i

which means that only the intensity of treatment is correlated with
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heterogeneity. (Or, can break the average into more than one time

period.)
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∙ Then can show the following class of estimators is consistent for t
provided we consistently estimate the mean responses given

̂t  N−1∑
i1

n

̂tY1, W̄i − ̂tY0, W̄i

where tY1, W̄i  EYit|Wit  1, W̄i and similarly for tY0, W̄i.
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∙With two periods and no treatment in the first period, can use the

Abadie (2005) with unit-level panel data. For example,

̂att,ps  N−1∑
i1

N
Wi − p̂XiΔYi
̂1 − p̂Xi

̂ate,ps  N−1∑
i1

N
Wi − p̂XiΔYi
p̂Xi1 − p̂Xi

.
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∙ These are just the usual propensity score weighted estimators but

applied to the changes in the responses over time.

∙ So matching based on the covariates or PS is available, too, as is

regression adjustment, using the time change in the response.

∙Much more convincing than regressions such as

Yi1 on 1,Wi, p̂Xi

which is worse than just the usual DD estimator.
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∙ Abadie’s approach does not extend immediately to more than two

time periods with complicated treatment patterns. The usual kind of

panel data models assume unconfoundedness of the entire history of

treatments given unobserved heterogeneity. Does this describe how

treatments are determined?
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∙ Lechner (1999), Gill and Robins (2001), and Lechner and Miquel

(2005) use unit-level panel data and assume sequential

unconfoundedness, also with more than two treatment states. Dynamic

regression adjustment, inverse propensity score weighting, matching

are all available solutions, as well as combined methods.
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∙ In the binary treatment case, the assumption is that Yit0,Yit1 is

independent of Wit (treatment assignment) conditional on

Yi,t−1, . . . ,Yi1,Wi,t−1, . . . ,Wi1,Xit where Xit is all observed covariates

up through time t. The propensity score is

ptRit  PWit  1|Yi,t−1, . . . ,Yi1,Wi,t−1, . . . ,Wi1,Xit

and then an estimate of t,ate is

̂t,ate  N−1∑
i1

N
Wit − p̂tRitYit
p̂tRit1 − p̂tRit
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∙With more than two treatment possibilities, sayWit ∈ 0, 1, . . . ,G,

the observed response can be written as

Yit  1Wit  0Yit0  1Wit  1Yit1 . . .1Wit  1Yit1

and a sufficient unconfoundedness assumption is

EYitg|Wit,Rit  EYitg|Rit, g  1, . . . ,G

and all t. Then, the means tg  EYitg are identified from, for

example,

tg  E
1Wit  gYit
ptgRit

,

where
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ptgRit  PWit  g|Rit

IPW estimators take the form

̂tg  N−1∑
i1

N
1Wit  gYit
p̂tgRit

and these estimates can be used to construct contrasts, such as

̂tg − ̂t,g−1.
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