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Abstract

This paper proposes a generalized specification for the panel data

model with random effects and first-order spatially autocorrelated

residuals that encompasses two previously suggested specifications.

The first one is described in Anselin’s (1988) book and the second by

Kapoor, Kelejian, and Prucha (2004). Our encompassing specification

allows us to test these models as restricted specifications. In partic-

ular, we derive three LM and LR tests that restrict our generalized

model to obtain (i) the Anselin model, (ii) the Kapoor, Kelejian, and

Prucha model, and (iii) the simple random effects model that ignores

the spatial correlation in the residuals. For two of these three LM
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tests, we obtain closed form solutions. Our Monte Carlo results show

that the suggested tests are powerful in testing for these restricted

specifications even in small and medium sized samples.

JEL classification: C23; C12

Keywords: Panel data; Spatially autocorrelated residuals; maximum-

likelihood estimation
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1 Introduction

The recent literature on spatial panels distinguishes between two different

spatial autoregressive error processes. One specification assumes that spa-

tial correlation occurs only in the remainder error term, whereas no spatial

correlation takes place in the individual effects (see Anselin, 1988, Baltagi,

Song, and Koh, 2003, and Anselin, Le Gallo, and Jayet, 2005; henceforth

referred to as the Anselin model). Another specification assumes that the

same spatial error process applies to both the individual and remainder error

components (see Kapoor, Kelejian, and Prucha, 2004; henceforth referred to

as the KKP model).

While the two data generating processes look similar, they imply different

spatial spillover mechanisms. For example, consider the question of firm pro-

ductivity using panel data. Besides the deterministic components, firms differ

also with respect to their unobserved know-how or their managerial ability to

organize production processes efficiently. At least over a short time period,

this managerial ability may be time-invariant. Beyond that there are inno-

vations that vary from period to period like random firm-specific technology

shocks, capacity utilization shocks, etc. Under this scenario, it seems rea-

sonable to assume that firm productivity may be spatially correlated due to

spillovers. Such spillovers can occur, e.g., through information flows (trans-

mission of process technologies) embodied in worker flows between firms at

local labor markets or through input-output channels (technology require-

ments and interdependence of capacity utilization). Whereas the Anselin

model assumes that spillovers are inherently time-varying, the KKP process

assumes the spillovers to be time-invariant as well as time-variant. For ex-
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ample, firms located in the neighborhood of highly productive firms may get

time-invariant permanent spillovers affecting their productivity in addition to

the time-variant spillovers as in the Anselin model. While the Anselin model

seems restrictive in that it does not allow permanent spillovers through the

individual firm effects, the KKP approach is restrictive in the sense that it

does not allow for a differential intensity of spillovers of the permanent and

transitory shocks.

This paper introduces a generalized spatial panel model which encom-

passes these two models and allows for spatial correlation in the individual

and remainder error components that may have different spatial autoregres-

sive parameters. We derive the maximum likelihood estimator (MLE) for this

more general spatial panel model when the individual effects are assumed to

be random. This in turn allows us to test the restrictions on our generalized

model to obtain (i) the Anselin model, (ii) the Kapoor, Kelejian, and Prucha

model, and (iii) a simple random effects model that ignores the spatial cor-

relation in the residuals. We derive the corresponding LM and LR tests for

these three hypotheses and we compare their size and power performance

using Monte Carlo experiments.

2 A Generalized Model

Econometric models for panel data with spatial error processes have been

proposed by Anselin (1988), Baltagi, Song, and Koh (2003), Kapoor, Kele-

jian, and Prucha (2004) and Anselin, Le Gallo, and Jayet (2005), to mention

a few. A generalized spatial panel model that encompasses these previous
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specifications as special cases is given by:

y = Xβ + u (1)

u = Zµu1 + u2

u1 = ρ1WNu1 + µ

u2 = ρ2Wu2 + ν,

where y is the dependent variable of dimension (n×1) with n = NT denoting

the number of observations. N is the number of unique cross-sectional units,

while T is the number of time periods. The (n × K) matrix X comprises

the set of exogenous variables. β is the corresponding (K × 1) parameter

vector. The error component structure is given by the second equation with

Zµ = ιT ⊗ IN denoting the selector matrix for the (N × 1) random vector of

individual effects u1. Here ιT is a vector of ones of dimension T and IN is an

identity matrix of dimension N . The vector of individual effects µ is assumed

to be i.i.d.(0, σ2
µIN), while the (n × 1) vector of remainder disturbances ν

is assumed to be i.i.d.(0, σ2
νIn). In addition, µ and ν are assumed to be

independent of each other. Both u1 and u2 are spatially correlated with

the same spatial weight matrix WN for each time period, but with different

spatial autocorrelation parameters ρ1and ρ2, respectively. Ordering the data

first by time (with index t = 1, ..., T ) and then by individual units (with

index i = 1, ..., N), we get W = IT ⊗WN , where the (N ×N) spatial weight

matrix WN has zero diagonal elements and is row-normalized with its entries

usually declining with distance. This in turn results in row and column sums

of WN that are uniformly bounded in absolute value.1 We also assume that

1Row-normalization is sufficient but not necessary to achieve uniform boundedness

of the row sums of WN . Kelejian and Prucha (2005) argue that one can alternatively
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ρr is bounded in absolute value, i.e., |ρr| < 1 for r = 1, 2.

This model encompasses both the KKP model, which assumes that ρ1 =

ρ2, and the Anselin model, which assumes that ρ1 = 0. When ρ1 = ρ2 = 0,

i.e., there is no spatial correlation, this model reduces to the familiar random

effects (RE) panel data model; see Baltagi (2005).

Let A = (IN − ρ1WN) and B = (IN − ρ2WN), then

u1 = A−1µ ∼ (0, σ2
µ(A′A)−1) (2)

u2 = (IT ⊗B−1)ν ∼ (0, σ2
ν(IT ⊗ (B′B)−1)). (3)

Observe that tr(A) = tr(B) = N , since tr(WN) = 0. Furthermore, A′A = IN

−ρ1W
′
N − ρ1WN + ρ2

1W
′
NWN , with tr(A′A) = N + ρ2

1tr(W
′
NWN) and

tr(B′B) = N + ρ2
2tr(W

′
NWN). The variance-covariance matrix of the spa-

tial random effects panel data model is given by

Ωu = E(uu′) = E[(Zµu1 + u2)(Zµu1 + u2)
′] (4)

= σ2
µ(JT ⊗ (A′A)−1) + σ2

ν(IT ⊗ (B′B)−1)

= JT ⊗ [Tσ2
µ(A′A)−1 + σ2

ν(B
′B)−1] + σ2

ν(ET ⊗ (B′B)−1) = σ2
νΣu.

This uses the fact that E[u1u
′
2] = 0 since µ and ν are assumed to be indepen-

dent. Note that ZµZ
′
µ = JT ⊗ IN where JT is a matrix of ones of dimension

T . Let ET = IT − JT , where JT = JT /T is the averaging matrix, the last

equality replaces JT by TJT and IT by ET +JT ; see Wansbeek and Kapteyn

(1982). It is easy to show that the inverse of the (n × n) matrix Ωu can be

obtained from the inverse of smaller dimension (N ×N) matrices as follows:

Ω−1
u = JT ⊗ [Tσ2

µ(A′A)−1 + σ2
ν(B

′B)−1]−1 +
1

σ2
ν

(ET ⊗ (B′B)) =
1

σ2
ν

Σ−1
u ,

normalize by the maximum row sum of the spatial weights matrix.
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where

Σ−1
u = (JT ⊗ [T

σ2
µ

σ2
ν

(A′A)−1 + (B′B)−1]−1) + (ET ⊗ (B′B)). (6)

Also, det[Ωu] = det[Tσ2
µ(A′A)−1+σ2

ν(B
′B)−1] det[σ2

ν(B
′B)−1]T−1. Under the

assumption of normality of the disturbances the log likelihood function of the

unrestricted model is given by

LU(β, σ2
ν , σ

2
µ, ρ1, ρ2) = −NT

2
ln 2π − 1

2
ln det[Tσ2

µ(A′A)−1 + σ2
ν(B

′B)−1]

−T − 1

2
ln det(σ2

ν(B
′B)−1)− 1

2
u′Ω−1

u u,

where u = y−Xβ. For the special case, when ρ1 = 0, this implies that A =

IN and the restricted log likelihood function reduces to the one considered

by Anselin (1988, p.154).

The hypotheses under consideration in this paper are the following:

(1) HA
0 : ρ1 = ρ2 = 0, and the alternative HA

1 is that at least one

component is not zero. The restricted model is the standard random effects

(RE) panel data model with no spatial correlation; see Baltagi (2005).

(2) HB
0 : ρ1 = 0, and the alternative is HB

1 : ρ1 6= 0. The restricted model

is the Anselin (1988) spatial panel model with random effects.

(3) HC
0 : ρ1 = ρ2 = ρ and the alternative is HC

1 : ρ1 6= ρ2. The restricted

model is the KKP spatial panel model with random effects.

In the next subsections, we derive the corresponding LM tests for these

hypotheses and we compare their performance with the corresponding LR

tests using Monte Carlo experiments.2

2LM tests for spatial models are surveyed in Anselin (1988, 1999) and Anselin and Bera

(1998), to mention a few. For a joint test of the absence of spatial correlation and random

effects in a panel data model, see Baltagi, Song, and Koh (2003).
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2.1 LM and LR Tests for HA
0 : ρ1 = ρ2 = 0

The joint LM test statistic for the null hypothesis of no spatial correlation,

HA
0 : ρ1 = ρ2 = 0, is derived in Appendix 1 and is given by

LMA =
(T − 1)σ̃4

1 + σ̃4
ν

2bAT 2(T − 1)σ̃8
1

G2
A −

σ̃2
ν

bAT (T − 1)σ̃4
1

GAMA +
1

2bA(T − 1)
M2

A, (7)

where σ̃2
1 = T σ̃2

µ + σ̃2
ν , bA = tr[(W′

N +WN)2], GA = ũ′{JT ⊗ (W′
N +WN)}ũ,

and MA = ũ′{( σ̃2
ν

σ̃4
1
JT + 1

σ̃2
ν
ET )⊗ (W′

N +WN)}ũ. In this case, ũ = y−Xβ̃ de-

notes the vector of restricted ML residuals. Under HA
0 , the restricted model

is the simple random effects (RE) panel data model with no spatial autocor-

relation. In fact, σ̃2
ν = ũ′{(ET⊗IN )}ũ

N(T−1)
and σ̃2

1 = ũ′{(JT⊗IN )}ũ
N

. The ML-estimates

under HA
0 are labelled by a tilde. Under HA

0 , the LMA statistic is expected

to be asymptotically distributed as χ2
2. The large sample distribution of the

LM test statistics derived in this paper are not formally established. How-

ever, they are likely to hold under a set of low level assumptions developed in

Kelejian and Prucha (2001) for the Moran I statistic and in Kapoor, Kelejian,

and Prucha (2004) for the spatial random effects model.

One can also derive the corresponding LR test for HA
0 : ρ1 = ρ2 = 0 as

LRA = 2(LU − LA
R),

using the restricted log likelihood

LA
R = −NT

2
ln 2πσ̃2

ν −
N

2
ln

σ̃2
1

σ̃2
ν

− 1

2
ũ′Ω̃−1

u ũ.

This test statistic is likewise expected to be asymptotically distributed as χ2
2.
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2.2 LM and LR Tests for HB
0 : ρ1 = 0

Under HB
0 : ρ1 = 0, the restricted model is the spatial panel data model with

random effects described in Anselin (1988). The corresponding LM test for

HB
0 is a conditional test for zero spatial correlation in the individual effects,

allowing for the possibility of spatial correlation in the remainder error term,

i.e., ρ2 6= 0. Appendix 2 gives the formal derivation of this LM statistic.

In fact, under HB
0 , the information matrix is block diagonal with the lower

block being independent of β. Let dθ be the (4× 1) score vector referring to

the parameter vector θ = (σ2
µ, σ

2
ν , ρ1, ρ2) and denote the 4× 4 lower block of

the information matrix by Jθ. The ML-estimates under HB
0 are labelled by a

hat. The LM test for HB
0 makes use of the estimated score d̂θ = [0, 0, d̂ρ1 , 0]′

with

d̂ρ1 =
∂L

∂ρ1

∣∣∣∣
HB

0

= −1

2
T σ̂2

µtr[C1C2] +
1

2
σ̂2

µû
′{JT ⊗C1C2C1}û,

where C1 = [T σ̂2
µIN + σ̂2

ν(B̂
′B̂)−1]−1 and C2 = (W′

N +WN). An estimate of

the lower (4× 4) block of the information matrix Ĵθ under HB
0 is given by



1
2
trC2

3 +
N(T−1)

2σ̂4
ν

T
2

tr [C3C1]
Tσ̂2

µ

2
tr[C3C1C2]

σ̂2
ν
2

tr[C3C1C4] +
(T−1)

2σ̂2
ν

tr[C5]

T
2

tr [C3C1] T2

2
tr

[
C2

1

] T2σ̂2
µ

2
tr[C2

1C2]
Tσ̂2

ν
2

tr[C2
1C4]

Tσ̂2
µ

2
tr[C3C1C2]

T2σ̂2
µ

2
tr[C2

1C2]
T2σ̂4

µ

2
tr[C1C2]2

Tσ̂2
µσ̂2

ν

2
tr[C1C2C1C4]

σ̂2
ν
2

tr[C3C1C4] +
(T−1)

2σ̂2
ν

tr[C5]
Tσ̂2

ν
2

tr[C2
1C4]

Tσ̂2
µσ̂2

ν

2
tr[C1C2C1C4]

σ̂4
ν
2

tr[C1C4]2 +
(T−1)

2
tr[C2

5]


,

where û = y − Xβ̂, C3 = [T σ̂2
µ(B̂′B̂) + σ̂2

νIN ]−1, C4= (B̂′B̂)−1(W′
NB̂ +

B̂′WN)(B̂′B̂)−1, C5 = (W′
NB̂ + B̂′WN)(B̂′B̂)−1. The LM test for HB

0 has

no simple closed form representation and is calculated as

LMB = d̂′
θĴ

−1
θ d̂θ = d̂2

ρ1
Ĵ−1

33 , (8)
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where Ĵ−1
33 is the (3, 3) element of the inverse of the information matrix Ĵ−1

θ

evaluated at HB
0 . This test statistic is expected to be asymptotically dis-

tributed as χ2
1. The corresponding LR test is based upon the restricted log

likelihood

LB
R = −NT

2
ln 2πσ̂2

ν −
1

2
ln det[C1] (9)

+
T − 1

2
ln det(B̂′B̂)− 1

2
û′Ω̂−1

u û.

This restricted log-likelihood is the same as that given by Anselin (1988, p.

154).

2.3 LM and LR Tests for HC
0 : ρ1 = ρ2 = ρ

Under HC
0 : ρ1 = ρ2 = ρ, the true model is that suggested by KKP. In

this case, B = A and the parameter estimates under HC
0 are labelled by a

bar. The score and the information matrix needed for this test are derived

in Appendix 3. The joint LM test statistic for HC
0 is given by

LMC =
(T − 1)σ4

1 + σ4
ν

2bCT 2(T − 1)σ8
1

G2
C −

σ2
ν

bCT (T − 1)σ4
1

GCMC +
1

2bC(T − 1)
M2

C (10)

where GC = −Tσ2
1tr(D) + u′{JT ⊗ F}u, MC = −

[
σ2

ν

σ2
1

+ (T − 1)
]
tr(D) +

u′{(σ2
ν

σ4
1
JT + 1

σ2
ν
ET )⊗F}u, D = (W′

NA + A
′
WN)(A

′
A)−1 and F = W′

NA +

A
′
WN . Also, bC = tr(D2) − (tr(D))2/N , σ2

1 = u′{JT⊗(A
′
A)}u

N
and σ2

ν =

u′{ET⊗(A
′
A)}u

N(T−1)
. Under HC

0 , the LMC statistic is asymptotically distributed as

χ2
1.

The LR test is based on the following restricted likelihood:

LC
R = −NT

2
ln 2πσ2

ν −
N

2
ln(

σ2
1

σ2
ν

) +
T

2
ln det(B

′
B)− 1

2
u′Ω

−1

u u.
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Kapoor, Kelejian, and Prucha (2004) consider a Generalized Moments

method of estimation, rather than MLE, for their spatial random effects

panel data model. Nevertheless, LC
R is the restricted likelihood for the KKP

model.

3 Monte Carlo Results

In the Monte Carlo analysis, we use a simple panel data model that includes

one explanatory variable and a constant (K = 2)

yit = β0 + β1xit + uit, i = 1, ..., N and t = 1, ..., T ,

where β0 = 5 and β1 = 0.5. xit is generated by xit = ζi + zit, where ζi ∼ i.i.d.

U [−7.5, 7.5] and zit ∼ i.i.d. U [−5, 5]. The individual specific effects are

drawn from a normal distribution so that µi ∼ i.i.d. N(0, 20θ), while for the

remainder error we assume νit ∼ i.i.d. N(0, 20(1− θ)) with 0 < θ < 1. This

implies σ2
µ + σ2

ν = 20 and θ =
σ2

µ

σ2
µ+σ2

ν
is the proportion of the total variance

due to the heterogeneity of the individual specific effects. We generate the

spatial weighting matrix by allocating observations randomly on a grid of

2N squares. Consequently, as the number of observations N increases, the

number of squares in the grid grows larger, too. The probability that an

observation is located on a particular coordinate is equal for all coordinates

on the grid. The spatial weighting scheme is based on the Queens design and

the corresponding spatial weighting matrix is normalized so that its rows

sum to one. ρ1 and ρ2 vary over the set {−0.8,−0.5,−0.2, 0, 0.2, 0.5, 0.8}.

We also vary the cross-sectional and time dimensions such that N = 50, 100

and T = 3, 5, 10. Lastly, θ, the proportion of the variance due to the random
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individual effects, takes the values 0.25, 0.50, and 0.75. In total, this amounts

to 882 experiments. For each experiment, we calculate the three LM and LR

tests as derived above using 2000 replications.3

===== Tables 1-3 =====

Table 1 reports the frequency of rejections for N = 50, T = 5, and θ = 0.5

in 2000 replications. This means that σ2
µ = σ2

ν = 10. The size of each test is

denoted in bold figures and is not statistically different from the 5% nominal

size. The only exception where the LM test might be undersized is for the

KKP model, for high absolute values of ρ1 and ρ2, both equal to 0.8. The

size adjusted power of the LR and LM tests is reasonably high for all three

hypotheses considered. The performance of the LM test is almost the same

as that of the LR test, except for a few cases. For HA
0 : ρ1 = ρ2 = 0, when

ρ1 = −0.5 and ρ2 = 0, the size adjusted power of the LM test is 61.4%

as compared to 64.6% for LR. However, when ρ1 = 0.5 and ρ2 = 0, the size

adjusted power of the LM test is 70% as compared to 66.4% for LR. Similarly,

for HB
0 : ρ1 = 0, when ρ1 = −0.5 and ρ2 = 0, the size adjusted power of the

LM test is 70.2% as compared to 72.9% for LR. However, when ρ1 = 0.5

and ρ2 = 0, the size adjusted power of the LM test is 76.7% as compared

to 74.6% for LR. For HC
0 : ρ1 = ρ2 = ρ, when ρ1 = −0.5 and ρ2 = 0, the

size adjusted power of the LM test is 66.1% as compared to 68.5% for LR.

3In a few cases, we got negative LR test statistics due to numerical imprecision. These

cases occur mainly with the Anselin model at ρ1 = 0. However, this happened in less than

0.5 percent of the Monte Carlo experiments. We drop the corresponding experiments in

the subsequent calculations of the size and power of the tests.
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However, when ρ1 = 0.5 and ρ2 = 0, the size adjusted power of the LM test

is 70.6% as compared to 65% for LR.

Tables 2 and 3 repeat the same experiments but now for θ = 0.25 and 0.75,

respectively. These tables show that as we increase θ, we increase the power

of these tests. In fact, the power of all three tests is higher, the higher the

variance of the individual specific effect as a proportion of the total variance.

For example, for HA
0 : ρ1 = ρ2 = 0, when ρ1 = −0.5 and ρ2 = 0, the size

adjusted power of the LM test increases from 61.4% for θ = 0.5 (in Table 1)

to 68% for θ = 0.75 (in Table 3), while the size adjusted power of the LR

test increases from 64.6% to 74.8%. Similarly, when ρ1 = 0.5 and ρ2 = 0,

the size adjusted power of the LM test increases from 70% for θ = 0.5 to

78.4% for θ = 0.75, while the size adjusted power of the LR test increases

from 66.4% to 77.4%. For HB
0 : ρ1 = 0, when ρ1 = −0.5 and ρ2 = 0, the size

adjusted power of the LM test increases from 70.2% for θ = 0.5 to 81% for

θ = 0.75, while the size adjusted power of the LR test increases from 72.9%

to 83.4%. However, when ρ1 = 0.5 and ρ2 = 0, the size adjusted power of the

LM test increases from 76.7% for θ = 0.5 to 86.6% for θ = 0.75, while the

size adjusted power of the LR test increases from 74.6% to 84.9% for LR. For

HC
0 : ρ1 = ρ2 = ρ, when ρ1 = −0.5 and ρ2 = 0, the size adjusted power of

the LM test increases from 66.1% for θ = 0.5 to 73% for θ = 0.75, while the

size adjusted power of the LR test increases from 68.5% to 74.8%. However,

when ρ1 = 0.5 and ρ2 = 0, the size adjusted power of the LM test increases

from 70.6% for θ = 0.5 to 80.4% for θ = 0.75, while the size adjusted power

of the LR test increases from 65% to 77.3%.
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Things also improve if the number of observations increases. The increase

in power is larger when we double N from 50 to 100 as compared to doubling

T from 5 to 10.4 We conclude that the three LM and LR tests perform rea-

sonably well in testing the restrictions underlying the simple random effects

model without spatial correlation, the Anselin model and the KKP model in

small and medium sized samples.

Figures 1-4 plot the size adjusted power for the various hypotheses con-

sidered. In Figure 1, the pure random effects model is true, whereas in Figure

2, the Anselin model is true. In Figures 3 and 4, the KKP-type model is true

with different values for the common ρ.

===== Figures 1-2 =====

Let us start with a comparison of the panels given in Figure 1, which

assumes that the random effects model is true (ρ1 = ρ2 = 0). On the left

hand side, we plot the size adjusted power of the LM test for deviations of

ρ1 from 0, maintaining that ρ2 = 0. On the right hand side it is the other

way around. Observe that the power of the LM test is higher for deviations

of ρ2 from 0 as compared to deviations of ρ1 from 0. Keep in mind that

the estimates of ρ2 are based on NT observations, while those of ρ1 rely on

only N observations. The top two panels show that the power increases for

deviations in ρ1 as θ increases. However, for deviations in ρ2, the power of

the test is insensitive to θ. The two panels at the center of Figure 1 illustrate

4We do not include the corresponding Tables 4−9, for (N = 50, T = 10) and (N = 100,

T = 5), for θ = 0.25, 0.50, and 0.75, in order to save space. However, these Tables

are available upon request from the authors. Below, we summarize the corresponding

information by means of size adjusted power plots.
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that both the size and the power of the LM test improve as the sample size

increases, especially as N becomes larger. A comparison of the two panels

at the center with those at the bottom of Figure 1 provides information on

the interaction of sample size (N , T ) and the relative importance of (θ). It

is obvious that for deviations of ρ1 from 0 (on the left), the size and power

improve with N , especially as θ increases.

Figure 2 assumes that the Anselin-type process of the error term is the

true model (ρ1 = 0). One important difference when compared to Figure 1

is that ρ2 is now a nuisance parameter. The qualitative effects of an increase

in N , T , and θ are similar to those in Figure 1 on the left hand side. The

right hand side panels of Figure 2 show that the size adjusted power of the

LM test is lower if ρ2 is high (0.5 compared to 0), especially for low θ (0.25

compared to 0.75).

===== Figures 3-4 =====

Figures 3 and 4 assume that the KKP model is the true one. Note that an

assessment of the performance of the LM test is different here, since the KKP

model assumes that ρ1 = ρ2. The null hypothesis in Figure 3 is ρ1 = ρ2 = 0.2

and the one in Figure 4 is ρ1 = ρ2 = 0.5. The major difference between the

two figures is that assuming a null that is different from ρ1 = ρ2 = 0 shifts the

size adjusted power function and renders it skewed to the right. Otherwise,

the conclusions regarding the impact of θ, N , and T are qualitatively similar

to those of the random effects model. A major difference from the random

effects model is that for the KKP model the power is lower in the ρ2 direction,

especially for small θ.
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4 Conclusions

The recent literature on first-order spatially autocorrelated residuals (SAR(1))

with panel data distinguishes between two data generating processes of the

error term. One process described in Anselin (1988) and Anselin, Le Gallo

and Jayet (2005) assumes that only the remainder error component is spa-

tially correlated. In an alternative process put forward by Kapoor, Kelejian,

and Prucha (2004) both the individual and remainder components of the

disturbances are characterized by the same spatial autocorrelation pattern.

This paper formulates a SAR(1) process of the residuals with panel data

that encompasses these two processes. In particular, this paper derives three

LM tests based upon the more general model, testing its restricted counter-

parts: the Anselin model, the Kapoor, Kelejian, and Prucha model, and the

random effects model without spatial correlation. For the latter two tests,

closed-form expressions for the LM statistics can be obtained.

Our Monte Carlo study assesses the small sample performance of the

derived tests. We find that the tests are properly sized and powerful even in

relatively small samples. The LM tests are easy to calculate and their power

is reasonably high for all three tests considered. The power of these LM

tests matches that of the corresponding LR tests except in a few cases. In

general, the power of the tests increases with the relative importance of the

individual effects’ variance as a proportion of the total variance, as well as

with increasing N and T . Hence, these LM and LR tests are recommended

for the applied researcher to test the restrictions imposed by the RE model

with no spatial correlation, the Anselin model, and the Kapoor, Kelejian,

and Prucha model.
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Appendix 1

This Appendix derives the joint LM test for the null hypothesis of no

spatial correlation in model (1). This is given by HA
0 : ρ1 = ρ2 = 0. Denote

the vector of parameters of interest by θ′ = (σ2
ν , σ

2
µ, ρ1, ρ2). We can focus on

the part of the information matrix corresponding to θ. Note that the part of

the information matrix corresponding to β can be ignored in computing this

LM statistic since the information matrix is block diagonal between θ and β,

and the first derivative with respect to β evaluated at the restricted MLE is

zero. The LM statistic is given by:

LMA = D̃′
θJ̃

−1
θ D̃θ (11)

where D̃θ = (∂L/∂θ)(θ̃) is a 4×1 vector of partial derivatives of the likelihood

function with respect to the elements of θ, evaluated at the restricted MLE θ̃.

J̃θ = E[−∂2L/∂θ∂θ′](θ̃) is the part of the information matrix corresponding

to θ, evaluated at the restricted MLE θ̃.

Under HA
0 : ρ1 = ρ2 = 0 and B = A = IN .

Ωu = σ2
1(JT ⊗ IN) + σ2

ν(ET ⊗ IN)

Ω−1
u =

1

σ2
1

(JT ⊗ IN) +
1

σ2
ν

(ET ⊗ IN).

Hartley and Rao (1971) and Hemmerle and Hartley (1973) give a general

useful formula that helps in obtaining the score:

∂L

∂θr

= −1

2
tr[Ω−1

u

∂Ωu

∂θr

] +
1

2
u′

[
Ω−1

u

∂Ωu

∂θr

Ω−1
u

]
u
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for r = 1, ..., 4.

Ω−1
u

∂Ωu

∂σ2
ν

=
1

σ2
1

(JT ⊗ IN) +
1

σ2
ν

(ET ⊗ IN)

u′
[
Ω−1

u

∂Ωu

∂σ2
ν

Ω−1
u

]
u = u′{( 1

σ4
1

JT +
1

σ4
ν

ET )⊗ IN}u

tr

(
Ω−1

u

∂Ωu

∂σ2
ν

)
=

N

σ2
1

+
N(T − 1)

σ2
ν

Ω−1
u

∂Ωu

∂σ2
µ

=
1

σ2
1

(JT ⊗ IN)

u′
[
Ω−1

u

∂Ωu

∂σ2
µ

Ω−1
u

]
u = u′{ 1

σ4
1

(JT ⊗ IN)}u

tr

(
Ω−1

u

∂Ωu

∂σ2
µ

)
=

NT

σ2
1

Ω−1
u

∂Ωu

∂ρ1

=
σ2

µ

σ2
1

(JT ⊗ (W′
N + WN))

u′
[
Ω−1

u

∂Ωu

∂ρ1

Ω−1
u

]
u =

σ2
µ

σ4
1

u′(JT ⊗ (W′
N + WN))u

tr

(
Ω−1

u

∂Ωu

∂ρ1

)
=

Tσ2
µ

σ2
1

tr(W′
N + WN) = 0

Ω−1
u

∂Ωu

∂ρ2

= (
σ2

ν

σ2
1

JT + ET )⊗ (W′
N + WN)

u′
[
Ω−1

u

∂Ωu

∂ρ2

Ω−1
u

]
u = u′{(σ

2
ν

σ4
1

JT +
1

σ2
ν

ET )⊗ (W′
N + WN)}u

tr

(
Ω−1

u

∂Ωu

∂ρ2

)
=

[
σ2

ν

σ2
1

+ (T − 1)

]
tr(W′

N + WN) = 0.

Therefore, the score under HA
0 is given by

∂L

∂σ2
ν

∣∣∣∣
HA

0

= − N

2σ2
1

− N(T − 1)

2σ2
ν

+
1

2
u′{( 1

σ4
1

JT +
1

σ4
ν

ET )⊗ IN}u
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∂L

∂σ2
µ

∣∣∣∣
HA

0

= −NT

2σ2
1

+
1

2
u′{ 1

σ4
1

(JT ⊗ IN)}u

∂L

∂ρ1

∣∣∣∣
HA

0

=
σ2

µ

2σ4
1

u′(JT ⊗ (W′
N + WN))u

∂L

∂ρ2

∣∣∣∣
HA

0

=
1

2
u′{(σ

2
ν

σ4
1

JT +
1

σ2
ν

ET )⊗ (W′
N + WN)}u.

Using the following matrix differentiation formula given in Harville (1977),

the elements of the information matrix can be obtained as:

Jrs = E

[
− ∂2L

∂θrθs

]
=

1

2
tr

[
Ω−1

u

∂Ωu

∂θr

Ω−1
u

∂Ωu

∂θs

]
r, s = 1, ..., 4

J11 =
N

2σ4
1

+
N(T − 1)

2σ4
ν

J12 =
NT

2σ4
1

J13 =
Tσ2

µ

2σ4
1

tr(W′
N + WN) = 0

J14 =

(
σ2

ν

2σ4
1

+
(T − 1)

2σ2
ν

)
tr(W′

N + WN) = 0

J22 =
NT 2

2σ4
1

J23 =
T 2σ2

µ

2σ4
1

tr(W′
N + WN) = 0

J24 =
Tσ2

ν

2σ4
1

tr(W′
N + WN) = 0

J33 =
T 2σ4

µ

2σ4
1

tr(W′
N + WN)2

J34 =
Tσ2

µσ
2
ν

2σ4
1

tr(W′
N + WN)2

J44 =

(
σ4

ν

2σ4
1

+
(T − 1)

2

)
tr(W′

N + WN)2.
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Note that the restricted MLE of β under HA
0 is the MLE of a standard

random effects (RE) error component model with no spatial correlation β̃

and ũ = y −Xβ̃. From the second score equation one gets

σ̃2
1 =

ũ′{(JT ⊗ IN)}ũ
N

and substituting this into the first score equation, one gets

σ̃2
ν =

ũ′{(ET ⊗ IN)}ũ
N(T − 1)

.

The score with respect to each element of θ evaluated at the restricted MLE

θ̃ is given by

d̃θ =


0

0
σ̃2

µ

2σ̃4
1
ũ′{JT ⊗ (W′

N + WN)}ũ
1
2
ũ′{( σ̃2

ν

σ̃4
1
JT + 1

σ̃2
ν
ET )⊗ (W′

N + WN)}ũ


and the information matrix evaluated at the restricted MLE θ̃ is given by

J̃θ =



N
2σ̃4

1
+ N(T−1)

2σ̃4
ν

NT
2σ̃4

1
0 0

NT
2σ̃4

1

NT 2

2σ̃4
1

0 0

0 0
T 2σ̃4

µ

2σ̃4
1

bA
Tσ̃2

µσ̃2
ν

2σ̃4
1

bA

0 0
T σ̃2

µσ̃2
ν

2σ̃4
1

bA

(
σ̃4

ν

2σ̃4
1

+ (T−1)
2

)
bA


where bA = tr((W′

N + WN)2). The determinant of the submatrix J̃ρ1,ρ2 is

given by ∣∣∣J̃ρ1,ρ2

∣∣∣ =

(
bA

2

)2 T 2(T − 1)σ̃4
µ

σ̃4
1

and the inverse of J̃ρ1,ρ2 is given by

J̃−1
ρ1,ρ2

=
2

bA

1

T 2(T − 1)σ̃4
µ

 (T − 1)σ̃4
1 + σ̃4

ν −T σ̃2
µσ̃

2
ν

−T σ̃2
µσ̃

2
ν T 2σ̃4

µ

 .
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Define

GA = ũ′{JT ⊗ (W′
N + WN)}ũ

MA = ũ′{( σ̃
2
ν

σ̃4
1

JT +
1

σ̃2
ν

ET )⊗ (W′
N + WN)}ũ.

Then, the resulting LM statistic for HA
0 is given by

LMA =
(T − 1)σ̃4

1 + σ̃4
ν

2bAT 2(T − 1)σ̃8
1

G2
A −

σ̃2
ν

bAT (T − 1)σ̃4
1

GAMA +
1

2bA(T − 1)
M2

A.

Under HA
0 , this LMA statistic is asymptotically distributed as χ2

2.

Appendix 2

This Appendix derives the LM test for the null hypothesis that the spatial

panel correlation follows the specification described in Anselin(1988). This

is given by HB
0 : ρ1 = 0.

Under HB
0 : ρ1 = 0;A = IN and Ωu = JT ⊗ [Tσ2

µIN + σ2
ν(B

′B)−1]+

σ2
ν [ET ⊗ (B′B)−1], Ω−1

u = JT ⊗ [Tσ2
µIN + σ2

ν(B
′B)−1]−1+ 1

σ2
ν
(ET ⊗B′B)

Ω−1
u

∂Ωu

∂σ2
ν

= JT ⊗ [Tσ2
µ(B′B) + σ2

νIN ]−1 +
1

σ2
ν

(ET ⊗ IN)

u′
[
Ω−1

u

∂Ωu

∂σ2
ν

Ω−1
u

]
u = u′{JT ⊗ [Tσ2

µ(B′B) + σ2
νIN ]−1[Tσ2

µIN + σ2
ν(B

′B)−1]−1

+
1

σ4
ν

[ET ⊗B′B]}u

tr

(
Ω−1

u

∂Ωu

∂σ2
ν

)
= tr[Tσ2

µ(B′B) + σ2
νIN ]−1 +

N(T − 1)

σ2
ν

Ω−1
u

∂Ωu

∂σ2
µ

= JT ⊗ [Tσ2
µIN + σ2

ν(B
′B)−1]−1

u′
[
Ω−1

u

∂Ωu

∂σ2
µ

Ω−1
u

]
u = u′{JT ⊗ [Tσ2

µIN + σ2
ν(B

′B)−1]−2}u

tr

(
Ω−1

u

∂Ωu

∂σ2
µ

)
= T tr[Tσ2

µIN + σ2
ν(B

′B)−1]−1
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Ω−1
u

∂Ωu

∂ρ1

= σ2
µJT ⊗ [Tσ2

µIN + σ2
ν(B

′B)−1]−1(W′
N + WN)

u′
[
Ω−1

u

∂Ωu

∂ρ1

Ω−1
u

]
u = σ2

µu
′{JT ⊗ [Tσ2

µIN + σ2
ν(B

′B)−1]−1(W′
N + WN)

[Tσ2
µIN + σ2

ν(B
′B)−1]−1}u

tr

(
Ω−1

u

∂Ωu

∂ρ1

)
= Tσ2

µ tr{[Tσ2
µIN + σ2

ν(B
′B)−1]−1(W′

N + WN)}

Ω−1
u

∂Ωu

∂ρ2

= σ2
νJT ⊗ [Tσ2

µIN + σ2
ν(B

′B)−1]−1(B′B)−1(W′
NB + B′WN)(B′B)−1

+(ET ⊗ (W′
NB + B′WN)(B′B)−1)

u′
[
Ω−1

u

∂Ωu

∂ρ2

Ω−1
u

]
u = u′{σ2

νJT ⊗ [Tσ2
µIN + σ2

ν(B
′B)−1]−1(B′B)−1(W′

NB + B′WN)(B′B)−1

[Tσ2
µIN + σ2

ν(B
′B)−1]−1 +

1

σ2
ν

[ET ⊗ (W′
NB + B′WN)]}u

tr

(
Ω−1

u

∂Ωu

∂ρ2

)
= σ2

ν tr{[Tσ2
µIN + σ2

ν(B
′B)−1]−1(B′B)−1(W′

NB + B′WN)(B′B)−1}

+(T − 1)tr{(W′
NB + B′WN)(B′B)−1}.

Therefore, the score under HB
0 , is given by

∂L

∂σ2
ν

∣∣∣∣
HB

0

= −1

2
tr[Tσ2

µ(B′B) + σ2
νIN ]−1 − N(T − 1)

2σ2
ν

+
1

2
u′{JT ⊗ [Tσ2

µ(B′B) + σ2
νIN ]−1[Tσ2

µIN + σ2
ν(B

′B)−1]−1

+
1

σ4
ν

[ET ⊗ (B′B)]}u

∂L

∂σ2
µ

∣∣∣∣
HB

0

= −1

2
T tr[Tσ2

µIN + σ2
ν(B

′B)−1]−1

+
1

2
u′{JT ⊗ [Tσ2

µIN + σ2
ν(B

′B)−1]−2}u

∂L

∂ρ1

∣∣∣∣
HB

0

= −1

2
Tσ2

µ tr{[Tσ2
µIN + σ2

ν(B
′B)−1]−1(W′

N + WN)}

+
1

2
σ2

µu
′{JT ⊗ [Tσ2

µIN + σ2
ν(B

′B)−1]−1(W′
N + WN)[Tσ2

µIN + σ2
ν(B

′B)−1]−1}u
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∂L

∂ρ2

∣∣∣∣
HB

0

= −1

2
σ2

ν tr{[Tσ2
µIN + σ2

ν(B
′B)−1]−1(B′B)−1(W′

NB + B′WN)(B′B)−1}

−(T − 1)

2
tr{(W′

NB + B′WN)(B′B)−1}

+
1

2
u′{σ2

νJT ⊗ [Tσ2
µIN + σ2

ν(B
′B)−1]−1(B′B)−1(W′

NB + B′WN)(B′B)−1

[Tσ2
µIN + σ2

ν(B
′B)−1]−1 +

1

σ2
ν

[ET ⊗ (W′
NB + B′WN)]}u

and the elements of the information matrix are given by

J11 =
1

2
tr

[
(Tσ2

µ(B′B) + σ2
νIN)−1

]2
+

N(T − 1)

2σ4
ν

J12 =
T

2
tr

[
(Tσ2

µ(B′B) + σ2
νIN)−1(Tσ2

µIN + σ2
ν(B

′B)−1)−1
]

J13 =
Tσ2

µ

2
tr[(Tσ2

µ(B′B) + σ2
νIN)−1(Tσ2

µ + σ2
ν(B

′B)−1)−1(W′
N + WN)]

J14 =
σ2

ν

2
tr[(Tσ2

µ(B′B) + σ2
νIN)−1(Tσ2

µ + σ2
ν(B

′B)−1)−1

(B′B)−1(W′
NB + B′WN)(B′B)−1] +

(T − 1)

2σ2
ν

tr[(W′
NB + B′WN)(B′B)−1]

J22 =
T 2

2
tr

[
(Tσ2

µIN + σ2
ν(B

′B)−1)−1
]2

J23 =
T 2σ2

µ

2
tr[(Tσ2

µIN + σ2
ν(B

′B)−1)−1(Tσ2
µIN + σ2

ν(B
′B)−1)−1

(W′
N + WN)]

J24 =
Tσ2

ν

2
tr[(Tσ2

µIN + σ2
ν(B

′B)−1)−1(Tσ2
µIN + σ2

ν(B
′B)−1)−1

(B′B)−1(W′
NB + B′WN)(B′B)−1]

J33 =
T 2σ4

µ

2
tr[(Tσ2

µIN + σ2
ν(B

′B)−1)−1(W′
N + WN)]2
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J34 =
Tσ2

µσ
2
ν

2
tr[(Tσ2

µIN + σ2
ν(B

′B)−1)−1(W′
N + WN)

(Tσ2
µIN + σ2

ν(B
′B)−1)−1(B′B)−1(W′

NB + B′WN)(B′B)−1]

J44 =
σ4

ν

2
tr[(Tσ2

µIN + σ2
ν(B

′B)−1)−1(B′B)−1(W′
NB + B′WN)(B′B)−1]2

+
(T − 1)

2
tr[(W′

NB + B′WN)(B′B)−1]2.

Appendix 3

This Appendix derives the LM test for the null hypothesis HC
0 : ρ1 = ρ2 =

ρ, i.e., that the spatial panel correlation follows the specification proposed

by KKP.

Under HC
0 : ρ1 = ρ2 = ρ;B = A; Ωu = (σ2

1JT +σ2
νET )⊗ (A′A)−1, Ω−1

u =

( 1
σ2
1
JT + 1

σ2
ν
ET )⊗ (A′A).

Ω−1
u

∂Ωu

∂σ2
ν

=
1

σ2
1

(JT ⊗ IN) +
1

σ2
ν

(ET ⊗ IN)

u′
[
Ω−1

u

∂Ωu

∂σ2
ν

Ω−1
u

]
u = u′{ 1

σ4
1

(JT ⊗ IN)(A′A) +
1

σ4
ν

ET ⊗ (A′A)}u

= u′{( 1

σ4
1

JT +
1

σ4
ν

ET )⊗ (A′A)}u

tr

(
Ω−1

u

∂Ωu

∂σ2
ν

)
=

N

σ2
1

+
N(T − 1)

σ2
ν

Ω−1
u

∂Ωu

∂σ2
µ

=
1

σ2
1

(JT ⊗ IN)

u′
[
Ω−1

u

∂Ωu

∂σ2
µ

Ω−1
u

]
u = u′{ 1

σ2
1

(JT ⊗ IN)(σ2
1(A

′A)−1)−1}u

= u′{ 1

σ4
1

[JT ⊗ (A′A)]}u

tr

(
Ω−1

u

∂Ωu

∂σ2
µ

)
=

NT

σ2
1
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Ω−1
u

∂Ωu

∂ρ1

=
σ2

µ

σ2
1

JT ⊗ (W′
NA + A′WN)(A′A)−1

u′
[
Ω−1

u

∂Ωu

∂ρ1

Ω−1
u

]
u = u′{

σ2
µ

σ4
1

JT ⊗ (W′
NA + A′WN)}u

tr

(
Ω−1

u

∂Ωu

∂ρ1

)
=

Tσ2
µ

σ2
1

tr{(W′
NA + A′WN)(A′A)−1}

Ω−1
u

∂Ωu

∂ρ2

= σ2
νJT ⊗ [

1

σ2
1

(W′
NA + A′WN)(A′A)−1] +

ET ⊗ (W′
NA + A′WN)(A′A)−1

= (
σ2

ν

σ2
1

JT + ET )⊗ (W′
NA + A′WN)(A′A)−1

u′
[
Ω−1

u

∂Ωu

∂ρ2

Ω−1
u

]
u = u′{(σ

2
ν

σ4
1

JT +
1

σ2
ν

ET )⊗ (W′
NA + A′WN)}u
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]
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NA + A′WN)(A′A)−1}.

Therefore, the score under HC
0 is given by
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and the elements of the information matrix

J11 =
N

2σ4
1

+
N(T − 1)

2σ4
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Tσ2
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NT 2
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T 2σ2
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(
σ4
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1

+
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2

)
tr[(W′

NA + A′WN)(A′A)−1]2.

The restricted MLE estimates under HC
0 are labelled by a bar. In fact,

this gives the MLE of the KKP model and u = y − Xβ. From the second

score equation, we have

σ2
1 =

u′{JT ⊗ (A
′
A)}u

N

and substituting this into the first score equation, one obtains

σ2
ν =

u′{ET ⊗ (A
′
A)}u

N(T − 1)
.
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The score with respect to each element of θ evaluated at the restricted MLE

θ is given by

dθ =


0

0
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µ
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1
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ν
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
where D = (W′

NA + A
′
WN)(A

′
A)−1 and F = W′

NA + A
′
WN . The lower

(4× 4) block of the estimated information matrix evaluated at the restricted

MLE θ is given by
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To derive the lower right block of the inverse J
−1

θ , we use the formulae for the

partitioned inverse J
−1

ρ1,ρ2
= 2σ4

1(M22−M21M
−1
11 M12)

−1. The determinant of

M11 is given by

|M11| = NT
(T − 1)σ4

1

σ4
ν

and the inverse of M11 is

M−1
11 =

1
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σ4
ν

(T − 1)σ4
1

 T −1

−1
(T−1)σ4
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ν

Tσ4
ν
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Next we calculate

M21M
−1
11 M12 =
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Defining bC = tr(D2)− (tr(D))2/N and

GC = −Tσ2
1 tr(D) + u′{JT ⊗ F}u

MC = −
[
σ2

ν

σ2
1

+ (T − 1)

]
tr(D) + u′{(σ

2
ν

σ4
1

JT +
1

σ2
ν

ET )⊗ F}u

the resulting LM statistic for HC
0 is given by

LMC =
(T − 1)σ4

1 + σ4
ν

2bCT 2(T − 1)σ8
1

G2
C −

σ2
ν

bCT (T − 1)σ4
1

GCMC +
1

2bC(T − 1)
M2

C .

Under HC
0 the LMC statistic is asymptotically distributed as χ2

1.

Appendix 4

We use the constrained quasi-Newton method involving the constraints

σ2
µ > 0, σ2

ν > 0, −1 < ρ1 < 1 and −1 < ρ2 < 1 to estimate the param-

eters of the four models (the unrestricted model and the three restricted

ones: random effects, Anselin, and KKP). The quasi-Newton method cal-

culates the gradient of the likelihood numerically. We use the optimization

routine fmincon available from Matlab which uses the sequential quadratic

programming method. This method guarantees superlinear convergence by
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accumulating second order information regarding the Kuhn-Tucker equations

using a quasi-Newton updating procedure. An estimate of the Hessian of the

Lagrangian is updated at each iteration using the BFGS formula. However,

all tests are based on the analytically derived formulas for both the gradient

and the information matrix, using the estimated parameters.
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(N=50, T=5, σ2
µ=10, σ2

ν=10)

ρ1 ρ2 LM LR LM LR LM LR

-0.80 -0.80 1.000 1.000 0.938 0.964 0.039 0.041
-0.80 -0.50 1.000 1.000 0.985 0.992 0.590 0.565
-0.80 -0.20 0.997 0.998 0.989 0.991 0.919 0.922
-0.80 0.00 0.979 0.982 0.989 0.991 0.982 0.985
-0.80 0.20 0.997 0.997 0.989 0.993 0.999 0.999
-0.80 0.50 1.000 1.000 0.972 0.977 1.000 1.000
-0.80 0.80 1.000 1.000 0.925 0.938 1.000 1.000
-0.50 -0.80 1.000 1.000 0.562 0.595 0.172 0.307
-0.50 -0.50 1.000 1.000 0.692 0.711 0.046 0.046
-0.50 -0.20 0.913 0.925 0.727 0.742 0.318 0.324
-0.50 0.00 0.614 0.646 0.702 0.729 0.661 0.685
-0.50 0.20 0.888 0.886 0.690 0.724 0.868 0.894
-0.50 0.50 1.000 1.000 0.613 0.632 0.985 0.992
-0.50 0.80 1.000 1.000 0.430 0.450 0.999 1.000
-0.20 -0.80 1.000 1.000 0.144 0.153 0.643 0.755
-0.20 -0.50 1.000 1.000 0.175 0.183 0.209 0.231
-0.20 -0.20 0.663 0.669 0.164 0.167 0.042 0.045
-0.20 0.00 0.130 0.139 0.158 0.169 0.157 0.171
-0.20 0.20 0.696 0.660 0.186 0.203 0.453 0.499
-0.20 0.50 1.000 1.000 0.131 0.142 0.863 0.910
-0.20 0.80 1.000 1.000 0.095 0.097 0.976 0.996
0.00 -0.80 1.000 1.000 0.043 0.058 0.822 0.899
0.00 -0.50 1.000 1.000 0.043 0.055 0.501 0.509
0.00 -0.20 0.582 0.574 0.045 0.059 0.106 0.099
0.00 0.00 0.043 0.053 0.049 0.058 0.054 0.059
0.00 0.20 0.646 0.602 0.042 0.047 0.133 0.154
0.00 0.50 1.000 1.000 0.049 0.051 0.595 0.672
0.00 0.80 1.000 1.000 0.050 0.053 0.898 0.962
0.20 -0.80 1.000 1.000 0.117 0.092 0.962 0.983
0.20 -0.50 1.000 1.000 0.147 0.126 0.818 0.827
0.20 -0.20 0.605 0.593 0.174 0.142 0.402 0.382
0.20 0.00 0.130 0.110 0.148 0.125 0.131 0.111
0.20 0.20 0.686 0.649 0.171 0.140 0.048 0.053
0.20 0.50 1.000 1.000 0.134 0.116 0.283 0.348
0.20 0.80 1.000 1.000 0.093 0.082 0.798 0.909
0.50 -0.80 1.000 1.000 0.667 0.632 0.999 0.999
0.50 -0.50 1.000 1.000 0.761 0.728 0.989 0.988
0.50 -0.20 0.901 0.889 0.781 0.739 0.903 0.886
0.50 0.00 0.700 0.664 0.767 0.746 0.706 0.650
0.50 0.20 0.934 0.923 0.771 0.750 0.372 0.302
0.50 0.50 1.000 1.000 0.683 0.662 0.044 0.054
0.50 0.80 1.000 1.000 0.397 0.402 0.434 0.590
0.80 -0.80 1.000 1.000 0.994 0.995 1.000 1.000
0.80 -0.50 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.20 1.000 1.000 1.000 1.000 1.000 1.000
0.80 0.00 0.999 0.998 0.999 0.999 0.997 0.996
0.80 0.20 1.000 1.000 1.000 1.000 0.988 0.977
0.80 0.50 1.000 1.000 0.990 0.997 0.781 0.699
0.80 0.80 1.000 1.000 0.847 0.947 0.033 0.062

Table 1: Monte carlo simulations for size and power of LM and LR tests of the Anselin, the random 
effects and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications 

Anselin model
H0

B: ρ1=0
Kelejian-Prucha model

H0
C: ρ1=ρ2

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size 
adjusted power of the tests.

H0
A: ρ1=0, ρ2=0

Random effects model



(N=50, T=5, σ2
µ=5, σ2

ν=15)

ρ1 ρ2 LM LR LM LR LM LR

-0.80 -0.80 1.000 1.000 0.660 0.757 0.039 0.033
-0.80 -0.50 1.000 1.000 0.824 0.896 0.443 0.401
-0.80 -0.20 0.987 0.991 0.935 0.952 0.804 0.812
-0.80 0.00 0.896 0.923 0.950 0.963 0.940 0.953
-0.80 0.20 0.956 0.961 0.935 0.947 0.974 0.981
-0.80 0.50 1.000 1.000 0.875 0.902 0.993 0.999
-0.80 0.80 1.000 1.000 0.804 0.838 0.993 0.999
-0.50 -0.80 1.000 1.000 0.301 0.320 0.093 0.175
-0.50 -0.50 1.000 1.000 0.422 0.431 0.047 0.038
-0.50 -0.20 0.853 0.878 0.496 0.532 0.248 0.262
-0.50 0.00 0.389 0.425 0.489 0.502 0.448 0.484
-0.50 0.20 0.767 0.756 0.504 0.548 0.684 0.743
-0.50 0.50 1.000 1.000 0.378 0.419 0.865 0.920
-0.50 0.80 1.000 1.000 0.306 0.328 0.923 0.989
-0.20 -0.80 1.000 1.000 0.097 0.098 0.316 0.455
-0.20 -0.50 1.000 1.000 0.119 0.112 0.120 0.131
-0.20 -0.20 0.641 0.668 0.108 0.123 0.044 0.042
-0.20 0.00 0.100 0.111 0.126 0.129 0.123 0.125
-0.20 0.20 0.638 0.605 0.129 0.148 0.291 0.324
-0.20 0.50 1.000 1.000 0.084 0.097 0.588 0.674
-0.20 0.80 1.000 1.000 0.066 0.080 0.733 0.909
0.00 -0.80 1.000 1.000 0.049 0.057 0.457 0.659
0.00 -0.50 1.000 1.000 0.046 0.058 0.265 0.304
0.00 -0.20 0.570 0.586 0.050 0.053 0.076 0.071
0.00 0.00 0.050 0.055 0.048 0.052 0.053 0.049
0.00 0.20 0.627 0.596 0.039 0.039 0.096 0.119
0.00 0.50 1.000 1.000 0.050 0.043 0.310 0.413
0.00 0.80 1.000 1.000 0.050 0.045 0.521 0.753
0.20 -0.80 1.000 1.000 0.073 0.069 0.755 0.866
0.20 -0.50 1.000 1.000 0.104 0.081 0.585 0.613
0.20 -0.20 0.552 0.564 0.091 0.083 0.269 0.257
0.20 0.00 0.084 0.070 0.108 0.082 0.107 0.091
0.20 0.20 0.691 0.660 0.109 0.097 0.041 0.045
0.20 0.50 1.000 1.000 0.075 0.068 0.199 0.245
0.20 0.80 1.000 1.000 0.071 0.072 0.435 0.629
0.50 -0.80 1.000 1.000 0.468 0.438 0.971 0.989
0.50 -0.50 1.000 1.000 0.565 0.520 0.929 0.936
0.50 -0.20 0.772 0.765 0.586 0.571 0.790 0.754
0.50 0.00 0.505 0.482 0.579 0.557 0.535 0.492
0.50 0.20 0.886 0.873 0.541 0.524 0.252 0.197
0.50 0.50 1.000 1.000 0.325 0.351 0.039 0.050
0.50 0.80 1.000 1.000 0.182 0.193 0.236 0.322
0.80 -0.80 1.000 1.000 0.984 0.987 1.000 1.000
0.80 -0.50 1.000 1.000 0.993 0.993 1.000 1.000
0.80 -0.20 0.993 0.993 0.992 0.991 0.998 0.997
0.80 0.00 0.988 0.987 0.993 0.993 0.989 0.984
0.80 0.20 0.999 0.999 0.990 0.993 0.959 0.930
0.80 0.50 1.000 1.000 0.846 0.960 0.630 0.525
0.80 0.80 1.000 1.000 0.430 0.644 0.034 0.059

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size 
adjusted power of the tests.

Table 2: Monte carlo simulations for size and power of LM and LR tests of the Anselin, the random 
effects and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

Kelejian-Prucha model
H0

C: ρ1=ρ2H0
A: ρ1=0, ρ2=0

Random effects model Anselin model
H0

B: ρ1=0



(N=50, T=5, σ2
µ=15, σ2

ν=5)

ρ1 ρ2 LM LR LM LR LM LR

-0.80 -0.80 1.000 1.000 0.985 0.994 0.039 0.032
-0.80 -0.50 1.000 1.000 0.997 0.999 0.642 0.610
-0.80 -0.20 0.999 1.000 0.998 0.999 0.964 0.965
-0.80 0.00 0.986 0.995 0.997 0.998 0.995 0.996
-0.80 0.20 0.998 1.000 0.996 0.998 1.000 1.000
-0.80 0.50 1.000 1.000 0.993 0.997 1.000 1.000
-0.80 0.80 1.000 1.000 0.969 0.975 1.000 1.000
-0.50 -0.80 1.000 1.000 0.727 0.769 0.271 0.408
-0.50 -0.50 1.000 1.000 0.815 0.836 0.046 0.046
-0.50 -0.20 0.927 0.945 0.814 0.831 0.384 0.370
-0.50 0.00 0.680 0.748 0.810 0.834 0.730 0.748
-0.50 0.20 0.935 0.942 0.811 0.820 0.937 0.952
-0.50 0.50 1.000 1.000 0.755 0.777 0.999 1.000
-0.50 0.80 1.000 1.000 0.589 0.619 1.000 1.000
-0.20 -0.80 1.000 1.000 0.174 0.198 0.788 0.885
-0.20 -0.50 1.000 1.000 0.210 0.235 0.241 0.267
-0.20 -0.20 0.671 0.704 0.231 0.249 0.049 0.051
-0.20 0.00 0.163 0.189 0.236 0.256 0.176 0.192
-0.20 0.20 0.735 0.732 0.230 0.237 0.509 0.555
-0.20 0.50 1.000 1.000 0.178 0.188 0.934 0.965
-0.20 0.80 1.000 1.000 0.136 0.142 1.000 1.000
0.00 -0.80 1.000 1.000 0.042 0.053 0.951 0.978
0.00 -0.50 1.000 1.000 0.035 0.042 0.632 0.652
0.00 -0.20 0.579 0.594 0.039 0.050 0.129 0.117
0.00 0.00 0.040 0.047 0.036 0.045 0.041 0.049
0.00 0.20 0.645 0.625 0.039 0.048 0.193 0.222
0.00 0.50 1.000 1.000 0.048 0.053 0.751 0.804
0.00 0.80 1.000 1.000 0.049 0.053 0.992 0.998
0.20 -0.80 1.000 1.000 0.178 0.153 0.995 0.998
0.20 -0.50 1.000 1.000 0.182 0.170 0.915 0.921
0.20 -0.20 0.644 0.655 0.196 0.166 0.514 0.480
0.20 0.00 0.153 0.136 0.214 0.189 0.176 0.142
0.20 0.20 0.699 0.673 0.206 0.165 0.038 0.045
0.20 0.50 1.000 1.000 0.178 0.148 0.414 0.476
0.20 0.80 1.000 1.000 0.120 0.102 0.969 0.990
0.50 -0.80 1.000 1.000 0.794 0.775 1.000 1.000
0.50 -0.50 1.000 1.000 0.850 0.832 0.997 0.997
0.50 -0.20 0.938 0.937 0.860 0.845 0.950 0.944
0.50 0.00 0.784 0.774 0.866 0.849 0.804 0.773
0.50 0.20 0.955 0.950 0.860 0.839 0.452 0.386
0.50 0.50 1.000 1.000 0.828 0.811 0.040 0.056
0.50 0.80 1.000 1.000 0.635 0.639 0.660 0.786
0.80 -0.80 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.50 1.000 1.000 1.000 1.000 1.000 1.000
0.80 -0.20 1.000 1.000 1.000 1.000 1.000 1.000
0.80 0.00 0.999 1.000 1.000 1.000 0.999 0.999
0.80 0.20 1.000 1.000 1.000 1.000 0.991 0.981
0.80 0.50 1.000 1.000 0.999 0.999 0.805 0.728
0.80 0.80 1.000 1.000 0.988 0.994 0.032 0.063

Note: Bold figures refer to the size of the test at nominal size of 5%. All other figures refer to the size 
adjusted power of the tests.

H0
A: ρ1=0, ρ2=0

Random effects model

Table 3: Monte carlo simulations for size and power of LM and LR tests of the Anselin, the random 
effects and the Kapoor-Kelejian-Prucha models; share of rejections in 2000 replications

Anselin model
H0

B: ρ1=0
Kelejian-Prucha model

H0
C: ρ1=ρ2
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Figure 1: The power of the LM-test, random effects model
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Figure 2: The power of the LM-test, Anselin model
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Figure 3: The power of the LM-test, KKP model - part I
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Figure 4: The power of the LM-test,  KKP model - part II




