The Effects of Payroll Tax Subsidies for Low Wage Workers on Firms Level Decisions

Bruno Crépon (CREST)
Rozenn Desplatz (Direction de la Prévision)

(June 2002)
Abstract
We study the effect of the large increase of payroll tax subsidies for low-wage workers that occurred in France in 1995 and 1996. The analysis is based on a key treatment variable: the ex ante changes in average labor costs in 1994 solely due to the changes in the tax subsidies between 1994 and 1997. This ex ante reduction in average labor cost is computed using the “Déclarations Annuelles de Données Sociales” (DADS) in 1994, an exhaustive employee level file providing us with the wage of each worker in each firm. To evaluate this program, we extend the Rubin causal framework to the case where the economic policies involve a continuous treatment and we define the ensuing parameters of interest. We make the assumption of independence conditional on observable and generalize the Rosenbaum and Rubin (1983) propensity score property. We propose an estimation method based on the implementation of nonparametric series estimators. We find that, between 1994 and 1997, payroll tax subsidies are associated with very strong employment effects in the economy as well as on other firms outcomes like the stock of capital, the share of unskilled workers and the average labor cost.

Keywords: Tax subsidies, matched employer-employee data, econometric evaluation methods, selection bias, semiparametric estimation, series estimators.

Classification JEL: C14, C20, H22, J23, J31
1. Introduction

Payroll tax subsidies for low-wage workers were set up in France in 1993 in order to fight against the disappearance of unskilled jobs. The implementation of such policy is the opportunity to examine the effects on employment of policies aimed at skewing the wage distribution at the bottom of this distribution like changes in the minimum wage. The initial scheme of 1993 was considerably strengthened between 1995 and 1996. The purpose of this paper is to evaluate the effect of this large increase on employment and other firm level variables.

Detecting and measuring the effect of such policies as usually been difficult and their importance on labor market outcomes is still a matter of considerable debate (see the discussions surrounding the Card and Krueger’, 1995 study). Some studies are based on the estimation of structural models as Meyer and Wise (1983) and Laroque and Salanié (2002), but most studies focus on policy changes that they treat as natural experiment. One important difficulty faced by researchers however is to find a proper control group. Some have used aggregate data on employment in some industries in different states as in Card and Krueger (1994). On the opposite Abowd, Kramarz, Margolis and Philippon, (2001), use individual employee data and define their control group as workers just above the future level of minimum wage. Kramarz Philippon (2001) uses the same idea to study the effect of payroll tax subsidies in France which is the purpose of our paper.

We follow this route but base our study at the firm level which has the advantage of being well adapted to account for substitutions between various types of workers and also allows us to study other firm level variables. Our identification strategy relies on the fact that firms are affected differently by tax subsidies because they do not all have the same wage distribution. The firms that should a priori benefit most are those with the highest proportion of low-paid workers. Using exhaustive wage information, we computed for each firm in 1994 the potential change in the average labor costs, namely the ex ante reduction in average labor costs, solely due to the changes in tax subsidies between 1994 and 1997. We compare the changes over the period 1994-1997 of employment between firms with different ex ante cost reduction. However firms have characteristics that influence both the ex ante labor cost reduction and the evolution of employment. For example, low productivity firms are likely to be these most hit by the increase in international competition and thus are more likely to reduce their employment, but they are also likely to be the firms with lots of low paid workers benefiting therefore most from the policy. Hence, our approach necessitates the definition of a suitable framework allowing us to handle this simultaneity problem. One other issue is the possibility to identify the effects of the policy on firms’ outcomes using this framework. Namely, we have to justify that there exist a source of variability in our ex ante reduction of average labor cost that does not directly enter in the variation of employment?

To address properly the issue of simultaneity we start from the Rubin causal model (Rubin 1974,1977) and extend it to a continuous treatment case.\(^1\) This framework defines the causal effect of a treatment as the contrast between the two potential outcomes associated to the treatment status. The parameters of interest in this setting are mean values of these contrasts on different subpopulations. Their identification is however not straightforward. The simultaneity problem arises from the fact that potential outcomes and allocation to treatment are usually not independent. There is an important distinction between the assumptions of selectivity on observables and selectivity on both observables and unobservables. The assumption of selectivity on observable assumes that conditional on a set of observables, treatment and potential outcomes are

\(^1\) See Heckman, Lalonde and Smith (1999) for a comprehensive survey
independent. Matching treated and non treated with identical observables is the usual way to estimate the parameters of interest. The so-called propensity score property of Rosenbaum and Rubin (1983), allows to match individuals using only the probability of treatment given the observables. Heckman Ichimura and Todd (1998), Hahn (1998) and Hirano, Imbens and Ridder (2000) have recently proposed various estimators and have assessed the implications of the use of the propensity score on semi parametric efficiency bounds. These methods are particularly well suited to the problems of selectivity and heterogeneity of the treatment effect in the case of a unique treatment. The previous causal model as well as identification and estimation in the case of selectivity on observables has been extended to the case of multiple treatment by Lechner (2001) and Imbens (2000). Unfortunately these extensions are not directly usable for the evaluation of tax subsidies, which concern all firms in the economy but differentially depending on their proportion of low-wage workers. To identify the effects of tax subsidies, we extend the Rubin causal model to the case of continuous treatment. We define various parameters of interest and show how they can be identified under the assumption of selectivity on observables. We also extend the Rosenbaum and Rubin (1983) propensity score property. We propose an estimation method based on the implementation of non parametric series estimators (Andrews (1991)).

The data used in our empirical analysis comes from the matching of two sources: the BRN (Bénéfice Réels Normaux) and the DADS (Déclarations Annuelles de Données Sociales). The BRN is a firm level file providing most accounting variables as well as employment. It accounts for 60% of the firms and 94% of the turnover. Firms with a turnover of more than 3.5 million francs are required to fill the corresponding declarations annually. The DADS is an employee level file. Firms fill monthly declarations about each of their employee, providing information about hours, wages, occupation, age and gender. Statistical processing of the DADS became exhaustive starting in 1993. The file at our disposal is the aggregation over the year of all the monthly declarations for a given employee-firm pair. It do not covers paid agricultural workers and civil servants. At present, the employees covered by the DADS represent almost 80% of dependent employment. This file is used to compute the ex ante reduction of labor cost at the employee level which is then aggregated at the firm level. We also use this file to obtain information about the heterogeneity of the workforce using gender, skills and age criteria.

In the second part of this paper, we begin by setting out the statutory framework for the employer’s payroll tax subsidies for the low-wage workers. In Section 3, we use a factor supply-and-demand model to explain the relationship between potential outcomes and the ex ante labor cost reduction. In Section 4, we describe the data sources used to construct the samples as well as the definition of the variables of interest and the control variables chosen and present preliminary results, assuming linearity and homogeneity of the effect of the ex ante reduction in payroll tax subsidies. In Section 5, we present our extension of the Rubin causal model to the case of a continuous treatment. Results are presented in Section 6. We find that the payroll tax reduction for low wage workers have a strong effect on employment and examine the robustness of this finding in several dimension. We especially examine

2 The validity of the assumption of selectivity on observables is case specific. It has however been evaluated using experimental and non experimental control data in Heckman, Ichimura, Smith and Todd, (1998) and Heckman, Ichimura, and Todd, 1997. They conclude that when the set of available covariates is large enough and provided that potential outcomes are taken in difference before and after treatment, the conditional independence assumption is accepted, although the residual bias (insignificant), related to selectivity on unobservables, is sizeable compared to the order of magnitude of the parameters of interest.

3 Identification of the parameters of interest when there are selectivity on both observables and unobservables has also been extensively examined. Using Local Instrumental Variables (Heckman and Vytlacil (2000) have connected identification and estimation using semi parametric versions of Heckman (1979) sample selection model with instrumental variables methods proposed in Imbens and Angrist (1994).
the sensitivity of our result to the set of control variables used and find that the key control variable is the level of total factor productivity. Results are used to provide an estimation of the number of jobs created or saved in France by the policy. Our methodology is applied to other firm level variables. We find numerous evolutions indicating that payroll tax subsidies had a strong effect on employment through substitutions between inputs. Section 7 conclude.

2. Payroll tax subsidies for low wage workers in France

2.1 The measures taken since 1993 to reduce payroll taxes for the lower paid

Starting in 1993, France implemented various measures to reduce payroll tax rates for low wage workers. The measures introduced in 1993, which came into force on 1 July, consisted of an exemption of 5.4 points in employers’ payroll taxes for monthly wages below 1.1 times the minimum wage and a halving for those in the range between 1.1 and 1.2 times the minimum wage. This program was extended in 1995 through the raising, as of 1 January, of these two thresholds to 1.2 and 1.3 times the minimum wage respectively and the addition, as of 1 September, of a new regressive reduction between 1 and 1.2 times the minimum wage. These two programs were merged on 1 October 1996 into a single regressive reduction up to 1.33 times the minimum wage. The reduction is at its maximum at the level of the minimum wage with a reduction of 18.2 points in payroll taxes. Initially planned to last until 1 January 1998, this single regressive reduction has now been made indefinite and has even been extended in the context of the mandatory reduction of the workweek to 35 hours.

Figure 1 shows the various measures introduced in France between July 1993 and January 1998. It indicates the reduction in employer’s payroll taxes for a worker paid between 1 and 1.33 times the minimum wage over the period 1993-1997. It shows that payroll tax subsidies were modest between July 1993 and September 1995, but became substantial from then on.

Figure 1 – Rules for the reduction in payroll taxes form 1993 to 1998]

2.2 The ex ante reduction of average labor cost associated to payroll tax subsidies

We calculate, at individual firm level, the average *ex ante* labor cost reduction in 1994 associated with the measures taken in 1995 and 1996. In formal terms, using the gross wage $w_{ij,94}$ of employee j in firm i in 1994, taken from the DADS (Annual Declarations of Social Data), we calculated two labor costs according to the payroll tax rules for 1994 and 1997. That is:

$$c_{ij,94} = (1 + T_{94}(w_{ij,94}))w_{ij,94}$$

$$c_{ij,97} = (1 + T_{97}(w_{ij,94}))w_{ij,94}$$

where $T_{94}(w_{ij,94})$ (and $T_{97}(w_{ij,94})$) is the payroll tax associated to the gross wage level $w_{ij,94}$ and the 1994 tax rule (respectively the 1997 tax rule). The *ex ante* reduction in the average labor cost at the firm level is then equal to:
This reduction ranges from 0% for firms having no worker paid below 1.33 times the minimum wage in 1994 to 9.5% for firms all of whose workers are paid the minimum wage. It increases with the proportion of lower-paid workers in the firm.

Figure 2 and table 1 present different features of the distribution of the ex ante reduction in average labor cost for manufacturing firms (energy and agricultural sectors excluded) and non manufacturing firms (except financial sectors). They show that this distribution is heavily concentrated around low values for the ex ante reduction but that the reduction is nevertheless substantial (between 1 and 6%) for around half the firms.

[Table 1 - Ex ante reduction of labor cost]

[Figure 2 - Distribution of the ex ante reduction of labor cost in manufacturing and non manufacturing sectors.]

3. Identification of payroll tax subsidies effect using the ex-ante average labor cost reduction

The approach we adopt to identify the effect of payroll tax subsidies consists of regressing the evolution between 1994 and 1997 of a certain number of variables of interest (employment, average labor cost, manpower structure, etc.) on the ex ante cost reduction and a set of control variables. In this section, we examine the conditions for the validity of such an approach.

For this purpose, we base ourselves on a labor supply-and-demand model with several types of workers. The wages prevailing in a firm are assumed to be those that equalize supply and demand for each type of employee within the firm. Assuming monopolistic competition in the product markets, the demand for labor is written as:

\[\log N = \sum_{N,K} \pi_N \log c_N + \Sigma_{N,K} \pi_K \log c_K + u \]

where \(N \) and \(c_N \) are the vectors of employment and costs of the different types of workers. \(\pi_N \) is the diagonal matrix of their cost shares relative to total cost (including the cost of capital) and \(\Sigma_{N,K} \) and \(\Sigma_{N,K} \) are the matrices of Allen substitution elasticities reduced by the price elasticity of demand \(u \) the vector of perturbations that include technology and demand shocks.

The supply of workers addressed to each firm is simply defined as:

\[\log N = R \log w + v \]

where \(w \) is the vector of gross wages and \(R \) is the diagonal matrix of the elasticities of supply to gross wages, and \(v \) the vector of firm specific component of wages.
Costs and gross wages are linked by the relationship: \(c_{N_i} = (1 + T(w_j))w_j \), where \(T(\) \) is the payroll tax rate function. It is that function which has been changed by the introduction of payroll tax subsidies for low wage workers.

We show in Appendix A that based on the assumption:

Assumption (A-1): the categories of employees affected by payroll tax subsidies are complementary

the evolution in the variables of interest from 1994 to 1997, such as growth in gross wages or in the employment of different categories of workers, can be written as a function of the *ex ante* cost reduction \(t_i \) and firm specific characteristics:

\[
\Delta y_i = \Delta y\left(\sum_{NNi} \Sigma_{N,Ki} \cdot R_i \cdot \pi_i \cdot \log(c_{Ki97}) - \log(c_{Ki94}) \cdot u_{i,97} - u_{i,94} \cdot v_{i,97} - v_{i,94} \cdot t_i \right) \\
= \Delta y\left(\Phi_{\Delta y}, t_i \right)
\]

We also derive the set of factor entering in the *ex ante* labor cost reduction:

\[
t_i = t\left(\sum_{NNi} \Sigma_{N,Ki} \cdot R_i \cdot \pi_i \cdot \log(c_{Ki94}) \cdot u_{i,94} \cdot v_{i,94} \right) \\
= t\left(\Phi_{t_i} \right)
\]

This model makes it possible to derive the three following results:

(i) the *ex post* variables of interest can be defined as functions of the *ex ante* average labor cost reduction once it is assumed that the categories of workers affected by payroll tax subsidies are complementary;

(ii) the variables of interest depend on numerous factors that affect also the *ex ante* labor cost reduction

(iii) there exist factors having an impact on the *ex ante* reduction but not on the *ex post* variables.

These are individual firm effects which influence the distribution of wages in 1994 and hence the *ex ante* labor cost reduction but have no direct effect on the *ex post* variables since the latter are taken in difference.

These results show that it is possible to evaluate the impact of payroll tax subsidies on the evolutions of the variables of interest by comparing firms in terms of the size of their *ex ante* labor cost reduction. Given the existence of numerous factors that are common to the *ex ante* reduction and to the variables of interest, it is necessary to make comparisons between firms showing similar characteristics (i.e. all else being equal). In practice, we approach these characteristics through a set of observable variables and regress the variables of interest on these control variables and on the *ex ante* labor cost reduction. We then apply the following assumption:
Assumption (A-2): \(|X\) such that \(\Phi_{xy} \perp \Phi_i | X\) and \(I(t|X)\) is non degenerated

The first part of the assumption ensures that the control variables \(X\) make it possible to eliminate the selectivity bias. The second part states that the \(X\) variables do not totally explain the \(\text{ex ante}\) labor cost reduction i.e., there remains a source of random variation that is specific to the \(\text{ex ante}\) cost reduction: “comparable” firms can therefore benefit from different \(\text{ex ante}\) reductions. This assumption is essential for the identification of the impact of the \(\text{ex ante}\) reduction on the variables of interest.

One key issue to find control variables satisfying assumption A-2 concerns the unobserved terms in the demands and supplies of labor for various types of workers. With respect to demands it is likely that there is some tendency in these terms. This is consistent with the usual explanations of the decline in the demand for unskilled workers. We model them as \(u_n = u_n^{(1)} + u_n^{(2)}t\) where \(u_n^{(1)}\) is distributed as a random walk. This implies that there is a strong positive correlation between the residual in 1994 \(u_{94}\) and its variation \(u_{97} - u_{94}\) related to the firm-specific trend. To control for this common source of variability, we introduce the levels in 1994 as well as their changes over preceding periods of the labor productivity and the capital labor ratio. With respect to the supplies equations we base ourselves on the results of empirical studies using matched enterprise and employee data. These studies show that firm-specific component of variance is a major source of variation in compensation data Abowd, Kramarz and Margolis (1999). This means that the unobserved terms in supplies equation are likely to be strongly dispersed. Assuming these terms are distributed as random walks, we conclude that there is no correlation between the two terms \(v_{97} - v_{94}\) and \(v_{94}\) and that the variability of the latter is likely to be important. Therefore, the existence of strong preexisting differences between firms in the wage levels for given skills act as a random assignment to the policy.

Some factors are common to the two sets \(\Phi_A\) and \(\Phi_i\). It is the case for the shares of the various types of workers. They can be directly measured at the firm level by the shares in total hours worked for 18 categories of employees, created using sex, skilled level (3) and age groups (3). The other common factors are parameters from the technology of production and the price-elasticity of demand. There is no direct measure of these parameters. We introduce competition variables to approximate the unknown parameter of the price-elasticity of demand. These are measured at individual level using the markup and at sectoral level by the import and export ratios as well as by the entry and exit rates. Accounting for the possibility of substitution is of course very difficult. We can assume that there is no heterogeneity among firm here. However, past values of firms decisions, as well as the share of the various types of workers are related to the possibility of substitutions and can be used to mimic them. We introduce therefore past values of the level and the changes in value added, labor productivity, operating income capital ratio and the share of labor cost in the set of control variables.

The cost of capital enters the set \(\Phi_i\), and can be directly measured using firms accounting information following Auerbach (1983). We also add other firm level financial variables in the set of control variables. They consist of the share debt in total financing and the \(\text{ex ante}\) variation in the cost of capital, measuring the variation induced uniquely by changes in taxation over the period. There was indeed a major changes in taxation over the period 1994-1997 (increase in the rate of flat-rate deduction in full discharge from 19.4% to 25%, in the corporation tax rate from 33.3% to 41.7% and in the rate of taxation of capital gains from 19.4% to 26%).

4. Data and preliminary results
4.1 Data
We mainly use two datasets: the BRN file (Bénéfice Réels Normaux) which is a firm level dataset and the DADS (Déclarations Annuelles de Données Sociales), which is an employee level dataset. The BRN declarations are filled annually by firms with a turnover of more than 3.5 million francs (1992 threshold) whose commercial, industrial or craftwork activity is carried out for lucrative purposes. The files record firms accounting information as well as total employment. It covers 60% of the firms and accounts for 94% of the turnover. The DADS are filled each month by any firm employing workers. They cover all employers and their employees with the exception of paid agricultural workers and civil servants. The files at our disposal are the aggregation over the year of all declaration for a given firm employee pair. Statistical processing of the DADS became exhaustive starting in 1993. At present, the employees covered by the DADS represent almost 80% of dependent employment.

4.1.1 Variables computed from the BRN

Employment
The measure of employment in the BRN file is employment at the end of the year and is a full-time equivalent measure that accounts for part time workers.

Value added
The value added is defined as the difference between production and materials, added to production subsidies minus value added tax and other accrued taxes or credits for production. It is divided by the national accounts industry value added price index at the two-digit level of the French industrial classification.

Average labor cost
The average labor cost is equal to total labor compensation costs (salaries and payroll taxes) divided by employment.

Real capital stock
The real capital stock measure is computed as the gross book value of fixed assets including construction, technical installations and other fixed assets. It is adjusted for inflation assuming all the stock was bought in one time at a date computed as the difference between the considered year and the age of the stock of capital. This age is itself defined as the product of an assumed life time of 16 years and the ratio of the net to gross book value ratio.

Operating income
Operating income per unit of capital is computed as the difference between value added and total labor compensation.

Cost of capital
The measurement of the user cost of capital is firm-specific following Auerbach (1983). It is defined as the sum of terms reflecting economic depreciation of assets and inflation and the mean of the costs of debt and equity, weighted by their respective share in the firm’s financial structure. The debt cost is proxied by the observed average interest rate, the owners’ equity cost by using capital income taxes and the rate of economic depreciation as the net to gross book value ratio (i.e. amortized portion of the capital).

Ex ante change in the cost of capital
We calculate for each firm in 1994 the change in the capital cost, which is solely due to changes in taxes over the period 1994-1997. It is obtained by comparing two capital costs, which are computed in 1994 from the firm accounts using the 1994 and 1997 tax rates.

Total cost
Total cost in the enterprise is equal to the sum of total labor compensation labor and the product of the cost of capital and the capital stock. Using this information, we calculate the wage share in total costs and the ratio between value added and total costs to approximate the mark-up.

Total factor productivity growth
Total factor productivity growth is defined as the difference between the growth rate of real value added and the cost share-weighted average of the growth rates of labor and real capital.

Entry and exit rates
Entry and exit rates are computed at a three digit level following, Dunne, Roberts and Samuelson (1988). We use BRN files for adjacent years and assume that real entry and exit are well measured by the entry in and exit from the files.

Variables from the DADS
The DADS provide information on the total net nominal earnings during the year for each employee, the individual’s sex, date of birth, occupation, number of days and hours during the calendar year the individual worked in the establishment, status of the employee: full-time, part-time, intermittent workers and. We selected only full-time and part-time employees. It is used to compute the ex ante reduction in average labor cost detailed in Section 2 as well as the heterogeneity of the workforce.

The heterogeneity of the workforce is measured as the share in total hours worked of various types of workers which are defined using gender, age and occupation criteria.

Occupation
The DADS provide information about occupation at a 2-digit level. We create three skill levels: high skilled workers (included business heads, senior executives and intermediate occupations), skilled workers (skilled blue- and white-collar workers) and unskilled workers (unskilled blue- and white-collar workers).

Age
We define three age groups: youngest employees (less than 25 years old), middle aged employees (between 25 and 49 years old) and oldest employees (50 years old and more).

We obtain 18 categories of employees, by multiplying the three skill levels with the three age-level categories and sex. The various shares are defined using the aggregation at the firm level of total compensation costs and hours worked by individual’s category.

4.1.3 Outcome variables
Outcome variables are the changes over the period 1994-1997 (the years immediately preceding and following the intensification of the payroll tax subsidies) of some variables of interest. They are calculated as the logarithmic differences of these variables in 1997 and 1994. We mainly focus on employment, but we also consider value added, average labor cost, capital labor ratio, labor productivity, productivity of capital and the share in total hours worked of different categories of employees such as the unskilled, younger workers and unskilled younger workers.

4.1.4 Control variables
The control variables are introduced at their 1994 level and, for some of them, in terms of their average changes over the period defined as the first year a firm was present in the BRN files starting 1989, and 1994. For past characteristics of firms reflecting demand shocks, we take the logarithm of value added and its average change. For past characteristics reflecting technical progress shocks, we take the logarithm of labor productivity as well as the average growth in total factor productivity, the logarithm and the average difference of the logarithm of the capital labor ratio. The competition variables are measured at individual level by the markup (absolute level and changes). At the sector-level, we use the import and export ratios (two-digit level, available from the national accounts), together with the entry and exit rates (three digit level). The financial variables consist of the user cost of capital, the share of debt in total financing as well as the *ex ante* variation in the cost of capital. Last, we introduce the shares in hours worked of the 18 categories of employees. They also comprise at individual firm level the share of wages in costs and at the sectoral level (two-digit) the average cost and share of unskilled workers, obtained by aggregation of the DADS information at this level.
The construction of the sample is set out in details in appendix C. It consists of 87,720 firms, of which 34,371 (39%) are in manufacturing and 53,349 (61%) in non manufacturing. These firms employ a total of 3,772,941 people, of whom 2,053,777 (54%) work in manufacturing and 1,719,164 (46%) in non manufacturing.

4.2 Preliminary results on employment and payroll tax subsidies.
A first way to examine the effect of payroll tax subsidies and employment consist in regressing the growth rate of employment on the *ex ante* labor cost reduction and the different control variables:

\[\Delta y_i = a t_i + x_i b + u_i, \]

where \(\Delta y_i \) represents the growth rate of employment between 1994 and 1997, \(t_i \) the average *ex ante* labor cost reduction, \(x_i \) the control variables and \(u_i \) the error term. In this initial specification, the impact of a marginal increase in the *ex ante* labor cost reduction is assumed to be constant (linear relationship) and identical from one firm to another.

There are two parameters of interest that can be deduced from regression (1). The first is parameter \(a \) which indicates the sensitivity of employment to the *ex ante* reduction in average labor cost. This parameter has no structural interpretation. The elasticities in relation to the *ex ante* cost reduction in fact combine various parameters for the supply and demand of factors that cannot be dissociated (see appendix A). The second interesting parameter that can be deduced from regression (1) is an evaluation of the increase in the growth rate of employment due to payroll tax reduction: for each firm, the growth attributable to payroll tax subsidies is obtained by comparing the *ex post* situation of firms \(\Delta y_i \) with the one that would have prevailed in the absence of tax subsidies \(\Delta y_i(0) = x_i b + u_i \). It is then defined by:

\[E[\tilde{\xi}_i(\Delta y_i - \Delta y_i(0))] = a E[\tilde{\xi}_i t_i] \]

where \(\tilde{\xi}_i \) is a normalized weighting variable: \(\tilde{\xi}_i = N_i / \bar{E}[N_i] \) and \(N_i \) denotes employment at the firm level in 1994. The growth rates attributable to the tax subsidies are shown in the last two columns of table 2 for manufacturing and non manufacturing.

Results are presented in table 2. They show a positive and significant relationship between employment and the *ex ante* labor cost reduction. An increase in the *ex ante* reduction of 1 percentage point leads to a rise in employment of 1.6% in manufacturing and 1.8% in non manufacturing. Given the weighted average ex ante reduction in labor cost, the growth rates of employment attributable to the policy are estimated to be 1.3% and 2.4%, in respectively manufacturing and non manufacturing.

This simple procedure can be applied to other variables than employment. Table 2 also reports results for average labor cost and the share of unskilled workers. Results clearly show a sharp negative effect of the ex ante reduction on average labor cost as well as a positive effect on the share of unskilled workers. Both results thus indicate that the employment effect is probably linked to a strong substitution effect among workers.

[Table 2 : Effect of the ex ante reduction in labor cost on employment and other firm variables between 1994 and 1997.]
We examine the sensitivity of our results to the choice of control variables. Table 3 present results when only a subset of the previous variables is introduced. We consider five types of variables: past values of firm-level variables (value added, labor productivity, capital labor ratio, operating income capital ratio, mark-up, wage share), past values of the changes of these variables (value added, capital labor ratio, total factor productivity, operating income capital ratio, mark-up, wage share), financial variables (cost of capital in level and evolution, debt ratio, exante variation in the cost of capital associated with fiscal policy change), the skill structure (share in hours of 18 types of workers) and sector-level variables (entry and exit rate, import and export ratios, average labor cost of unskilled workers, growth rate of unskilled workers). For each type of variables we considered two control sets. In the first one we just introduce the considered subset, this is labeled as column “Just with”. In the second one all variables of the total set are included but the considered subset this is labeled as column “Without”. For both sector it clearly appears that the results obtained with the full set are obtained as long as the first set “firm-level variables” has been introduced. Including or not the other sets does not induce major changes.

[Table 3 : Sensitivity to control variables.]

Among the variables in level the labor productivity plays a key role. When introducing only labor productivity, the elasticity of the treatment variable in manufacturing is 2.24 and 1.29 in non manufacturing. Introducing only total factor productivity produces similar results. In our analysis the treatment value depend on the level of productivity and the way wages are set. The evolution of employment depend on the treatment and the evolution of productivity. A possible interpretation of the key role of total factor productivity is that firms with low total factor productivity are likely to be those for which things are getting worse and therefore those which are more likely to experience a reduction in their employment. Indeed the coefficient of total factor productivity in the previous simple regression of employment growth is positive.

5. Extension of the Rubin causal model to continuous treatment

In this section we extend the Rubin causal framework (Rubin (1974)) to the case of a continuous treatment and define the suitable parameters of interest. We also demonstrate their identification under an extended form of independence conditional on observables (Rubin (1977). We extend the propensity score property of Rosenbaum and Rubin (1983). Finally, we propose a semiparametric estimation method based on series estimators, using Andrews (1991) results.

5.1 Notations and definition of individual effects

Rubin’s initial framework considers the effect of a binary treatment. The causal effect of the program on one variable of interest \(y_i \) is defined as the difference of two potential outcomes \(y(1)_i \) and \(y(0)_i \) corresponding to what would be the situation of individual if they receive or not the treatment. As potential outcomes are not simultaneously observable, it is not possible to identify directly the individual causal effect.

In the statistical model considered here, firms \(i, i = 1, \ldots, N \), can receive any treatment \(t \) falling in the interval \([L, U] \). The model introduces for each firm as many latent output variables \(y_i(t) \) as there are possible treatments \(t \). As in the one treatment case only one of these variables is observed,
namely the one associated with the treatment that the firm has in fact received, i.e. \(y_i(t_i) \). This can also be written as:

\[
y_i = \int y_i(t) \delta_{ii}(t) dt
\]

Where \(\delta_{ii} \) is the Dirac function in \(t_i \).

The various individual effects of the measure are defined from these latent variables. By analogy with the Rubin causal model, one can compare for an individual the situations in which he benefits from treatments \(t_i \) and \(t_0 \):

\[
c_i(t_0, t_1) = y_i(t_1) - y_i(t_0).
\]

A closely related parameter is the effect of a marginal increase in treatment \(t_0 \)

\[
d_i(t_0) = \partial y_i(t_0) / \partial t
\]

Another interesting individual parameter compares the observed outcome with one specific potential outcome, for example the potential outcome associated with zero treatment:

\[
e_i = y_i - y_i(0)
\]

Last, the effect of a uniform marginal increase in treatment is also of interest:

\[
f_i = \partial y_i(t_i) / \partial t
\]

This formalization is very general since it makes no assumptions regarding the constancy of effects as between individuals. These effects are, however, unobservable, being defined on the basis of unobservable latent variables \(y_i(t) \). However, as in the one treatment case, it is possible to identify and estimate the expectations of these various parameters, under specific assumptions.

We therefore defined the four following parameters of interest:

(3) \(E_1 = E(y_i(t_0)) \) Uniform Treatment (UT)

(4) \(E_2 = E(\partial y_i(t_0) / \partial t) \) Marginal-Increase of a Uniform-Treatment (MIUT)

(5) \(E_3 = E((y_i - y_i(0))) \) Treatment on the Treated (TT)

(6) \(E_4 = E(\partial y_i(t_i) / \partial t) \) Marginal-Increase of Treatment (MIT)

The first parameter \(E_1 \) (UT) represents the average output that would have been observed if all individuals had received a same treatment of intensity \(t_0 \). The second parameter \(E_2 \) (MIUT) represents the average effect of a marginal increase in the treatment when it has a constant value equal to \(t_0 \) throughout the population. The third parameter \(E_3 \) (TT) represents the average effect of the treatment received \(y_i(t_i) \) compared with the situation in which all individuals would have received a null treatment. Interpreting this parameter as the effect of the tax subsidies therefore assumes that this latter situation \(y_i(0) \) is identical to the one that would have prevailed in the absence of the program \(y_i^0 \), which amounts to assume that there are no indirect effects (Heckman, Lalonde and Smith (1999)):

Assumption (A-3) : \(y_i(0) = y_i^0 \)
The last parameter E_4 (MIT) is the average effect of a marginal variation of the treatment t_i received by each individual.

5.2 Identification of the parameters of interest

One important type of identifying assumption in the case of a unique treatment is independence of potential outcomes $y(1)_i$ and $y(0)_i$ with treatment conditional on a set of observables, or under a weaker form the independence of $y(0)_i$ with treatment conditional on a set of observable. This identifying assumption has been analysed by Heckman, Ichimura and Todd (1997, 1999) and Heckman, Ichimura, Smith and Todd (1998). In these papers, they develop a kernel matching estimator and evaluate its performance using the experimental data available from the JTPA program.

We make the assumption that there exists a set of observable variables x_i conditional on which potential outcomes $y_i(t)$ and treatment t_i are independent:

Assumption (A-4): \(\exists x_i \) such that \(y_i(t) \perp t_i | x_i, \forall t \in [l, u] \)

Proposition (P-1):
Under assumption (A-3), parameters E_1, E_2, E_3 and E_4 are identifiable.

Proof: The general idea underlying proposition (P-1) is simple. Consider for example parameter E_1. We have $E_1 = E(y_i(t_0)) = E_x[E(y_i(t_0)|x_i)]$. Given the independence assumption A-4 we also have: $E(y_i(t_0)|x_i) = E(y_i(t_0)|x_i, t_i = t_0) = E(y_i|x_i, t_i = t_0) = g(x_i, t_0)$, where $g(x_i, t_i) = E(y_i|x_i, t_i)$ is identifiable from the data. Thus, the parameter E_1 is simply $E_1 = E[g(x_i, t_0)]$. Similarly, the second parameter can be rewritten as $E_2 = E[\partial g(x_i, t_0)/\partial t_i]$, the third one as $E_3 = E[y_i - g(x_i, 0)]$ and the last one as $E_4 = E[\partial g(x_i, t_i)/\partial t_i]$ and are all means of functions identifiable from the data.

Whereas in the previous approach, a particular form was given to the function g: $g(x, t) = a + bx + c$, in this new approach no functional form is specified. The counterpart of this generalization is the practical difficulty of estimating function $g(x, t)$. However, we show that it is sufficient to estimate a function of smaller dimension $g(s(x_i), t_i)$ where $s(x_i)$ is the score, properly defined. For this purpose, we generalize the property of Rosenbaum and Rubin (1983) in the case of discrete treatment to the case of continuous treatment.

Proposition (P-2):
Let x be a vector of covariates satisfying assumption A-4: \(y_i(t) \perp t_i | x_i, \forall t \in [l, u] \)

Let $s(x)$ be a function of these variables such that \(l(t_i | x_i) = l(t_i | s(x_i)) \)

where $l(t_i | x_i)$ is the distribution of the treatment conditionally on x_i.

Then assumption (A-4) holds for $s(x_i)$.
\[y_i(t) \perp t_i | s(x_i), \forall t \in [t, \bar{t}] \]

Proof: it is sufficient to show that \(I(t_i|y_i(t), s(x_i)) = I(t_i|s(x_i)) \) under the hypotheses \(y_i(t) \perp t_i | x_i \) and \(I(t_i|x_i) = f(t,s(x_i)) \). We calculate the two quantities and show that they are equal. On the one hand we have:

\[
I(t_i|y_i(t), s(x_i)) = \int I(t_i|y_i(t), x_i) I(x_i|s(x_i)) dx_i = \int I(t_i|x_i) I(x_i|s(x_i)) dx_i
\]

\[
= \int f(t_i, s(x_i)) I(x_i|s(x_i)) dx_i = f(t_i, s(x_i)) \int I(x_i|s(x_i)) dx_i = f(t_i, s(x_i))
\]

since given the assumptions \(I(t_i|y_i(t), x_i) = I(t_i|x_i) = f(t_i, s(x_i)) \). Furthermore, we have:

\[
I(t_i, s(x_i)) = \int I(t_i|x_i) I(x_i|s(x_i)) dx_i = \int f(t_i, s(x_i)) I(x_i|s(x_i)) dx_i
\]

\[
= f(t_i, s(x_i)) \int I(x_i|s(x_i)) dx_i = f(t_i, s(x_i))
\]

since \(I(t_i|x_i) = f(t_i, s(x_i)) \).

In the case of a single treatment, the score is of dimension 1 and corresponds to the probability of treatment conditionally on the control variables. There is nothing to say that it would be of dimension 1 in the case of continuous treatment. We shall nevertheless make this assumption in the application to the payroll tax subsidies\(^4\). The function \(g(s(x_i), t_i) \) is then bi-variate.

In the case of a unique treatment the conditional probability of being treated plays an important role both because of the Rosenbaum and Rubin property but also because parameters of interest can be estimated through weighting, weights being defined as functions of the conditional probability. This last type of estimation is interesting as, as shown in Hirano, Imbens, and Ridder (2001), it allows to reach the semiparametric efficiency bound. In the case of continuous treatment it is also possible to obtain an expression of some of the parameters of interest as a weighted mean of observation, weights being defined as a function of the conditional density. More precisely, we have the following property:

Proposition (P-3)

Let \(x \) be a vector of covariates satisfying assumption A-4: \(y_i(t) \perp t_i | x_i, \forall t \in [t, \bar{t}] \)

Let \(f_i(t_0) \) and \(f_i(t_0|x) \) be respectively the unconditional and conditional distribution of the treatment \(t \) on \(t_0 \), then

\[
E(y(t_0)) = E\left(y \frac{f_i(t_0)}{f_i(t_0|x)} | t = t_0 \right)
\]

\(^4\) We shall describe later the procedure adopted to estimate the score.
Proof: Consider a given value of treatment t_0 and the Dirac function $\delta(t-t_0)$ defined by \[\int g(t)\delta(t-t_0)dt = g(t_0) \] for any function $g(t)$. For any random variable z we have the following result: \[E(z\delta(t-t_0)) = E(z|t=t_0)f_t(t_0). \]

Indeed we have \[E(z\delta(t-t_0)) = \int z\delta(t-t_0)f_{z,t}(z,t)dz = \int zf_{z,t}(z,t_0)dz = E(z|t=t_0)f_t(t_0). \]

Now consider $E(y(t_0)\delta(t-t_0)|x)$, given the independence property, we have:
\[E(y(t_0)\delta(t-t_0)|x) = E(y(t_0)|x)E(\delta(t-t_0)|x) \]
and because of the preliminary result $E(\delta(t-t_0)|x) = f_t(t_0|x)$. Thus we have
\[E\left(\frac{y(t_0)}{f_t(t_0|x)} \delta(t-t_0) \right) = E\left(\frac{y(t_0)}{f_t(t_0|x)} \right) \]
which can be integrated over x to yield
\[E\left(\frac{y(t_0)}{f_t(t_0|x)} \delta(t-t_0) \right) = E(y(t_0)) \]

Applying now the preliminary result we get
\[E\left(\frac{y(t_0)}{f_t(t_0|x)} \delta(t-t_0) \right) = E\left(\frac{y(t_0)}{f_t(t_0|x)} \right) f_t(t_0) \]
and thus the desired result.

5.3 Estimation

Our estimators are defined as sample means of suitable functional transformation of a non-parametric estimate $\hat{g}(s,t)$ of $g(s,t) = E(y_i|s_i = s, t_i = t)$. We considered the following estimators for the parameters of interest UT, MIUT, TT, MIT defined by equations (3) to (6):

\[\hat{E}_1 = \frac{1}{N} \sum_{i=1}^{N} \hat{g}(s_i, t_0) \]
\[\hat{E}_2 = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial t} \hat{g}(s_i, t_0) \]
\[\hat{E}_3 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{g}(s_i, 0)) \]
\[\hat{E}_4 = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial t} \hat{g}(s_i, t_i) \]

There are various ways of estimating the unknown function g non-parametrically. Among them we could use the popular kernel estimator. However such a procedure would lead to intense computational burden as the function has to be estimated on all sample points. Instead, we used non-parametric series estimators to estimate the bivariate function $E(y_i|s_i, t_i) = g(s_i, t_i)$. Function g is approximated by a polynomial function of treatment and score whose degree increases with the size of the sample. We
therefore consider a polynomial basis \(\{P_k\} \), used to define the set of regressors
\[P_i = \left(\sum_{k+l \leq d_n} P_k(s_i)P_l(t_i) \right)_{k+l \leq d_n}, \]
with \(k \) and \(l \) the degrees for each of the polynomials and \(d_n \) the maximum degree of the polynomials used\(^5\). We then consider the coefficients \(\hat{\theta}' = \left(\hat{\theta}_{k,l} \right)_{k+l \leq d_N} \) of the regression of variables \(y_i \) on this set of regressors in the sample: \(\hat{\theta} = (P'P)^{-1}(P'Y) \) with \(P = (P_i) \) and \(Y = (y_i) \), \(\forall i = 1, \ldots, N \). The estimators for functions \(g \) and \(\partial g / \partial t \) are then given by
\[
\hat{g}(s,t) = \sum_{k+l \leq d_n} P_k(s)P_l(t) \hat{\theta}_{k,l} \quad \text{and} \quad \frac{\partial}{\partial t} \hat{g}(s,t) = \sum_{k+l \leq d_n} P_k(s) \frac{\partial P_l}{\partial t}(t) \hat{\theta}_{k,l}
\]

for any value of treatment and the score. The characteristic of these estimators is that the degree \(d_n \) of the polynomials entering the approximation of functions \(g \) and \(\partial g / \partial t \) increases with the size of the sample. This determines the number of regressors, which is equal to \((d_n + 1)(d_n + 2)/2\). In our application we will chose a degree between 1 and 6, which leads to the introduction of 28 regressors.

We refer to Andrews’ work (1991) to study the asymptotic properties of the estimators of the parameters \(E_1 \) to \(E_4 \) (consistency and asymptotic normality). Parameters \(E_1 \), \(E_2 \), \(E_3 \) et \(E_4 \) are of the form \(\Gamma(g) \) and the estimators \(\hat{E}_1 \), \(\hat{E}_2 \), \(\hat{E}_3 \) and \(\hat{E}_4 \) are written \(\Gamma_n(\hat{g}) \), where \(\hat{g} \) is a series estimator of function \(g \). Andrews (1991) gives conditions for the nature of the functional \(\Gamma \), function \(g \) and the family of functions serving in his approximation \(\hat{g} \) to describe the asymptotic behavior of the estimators. He examines several types of functionals, one of which comprises those we use. This is
\[
\Gamma_n(\hat{g}) = \int D^\lambda \hat{g}(t,s)d\eta(t,s),
\]
where \(\eta \) is a distribution of probabilities that can depend on the size of sample \(n \) and \(D^\lambda \) is any partial derivative operator (cf. case 6 of example 2.7 on page 310 of Andrews (1991)). In our case, we have, depending on the parameters considered: \(\lambda = 0 \) or \(\lambda = 1 \) and \(\eta = \delta_{t_0} \otimes \hat{f}_n(s) \) or again \(\eta = \hat{f}_n(s,t) \) with \(\hat{f}_n(s) \) empirical distribution of \(s \) and \(\delta_{t_0} \) is a Dirac delta function in \(t_0 \). Moreover, Andrews deals precisely with the case of polynomial approximations of functions with compact support. The results (theorems 1 and 2 and their application to example II) make it possible to establish that our estimators are consistent and asymptotically normal on certain assumptions of regularity of function \(g \) and when the degree of the polynomials increases with the size of sample at a rate below \(n^{1/6} \). On the other hand, Andrews’ results do not make it possible to identify the convergence rates of the estimators. In the application used in our study we use bootstrap to calculate the standard deviations by a random drawing of 500 samples and apply the same estimation procedure to each drawing.

5.4 Weighted parameters

In order to obtain effects on the growth rate of aggregated employment, we also consider weighted means of individual parameters, mainly:

\[^5\] We used Chebytchev polynomials. These polynomials constitute an orthogonal base on \([-1,1]\) for the weighting function \(1/\sqrt{1-x^2} \).
\[E_3 = E(\sigma_i (y_i - y_i(0))) \quad \text{Weighted Treatment on the Treated (WTT)} \]

\[E_4 = E(\sigma_i \frac{\partial y_i(t_i)}{\partial t}) \quad \text{Weighted Marginal-Increase of Treatment (WMIT)} \]

where \(\sigma_i \) is the normalized weighting variable i.e. \(\sigma_i = N_i / E(N_i) \) in which \(N_i \) denotes employment. The identification and estimation of these parameters requires additional assumptions. For identification, the weighting variable has to be included in the list of conditioning variables.

Assumption (A-5): \(y_i(t) \perp t_i | x_i, \sigma_i, \forall t \in [u, \bar{t}] \).

Under this assumption it can be shown easily that the two weighted parameters are identified. For the estimation, it is now the quantity \(E(y_i | s_i, t_i, \sigma_i) \) that has to be estimated and not \(E(y_i | s_i, t_i) \). Although it is possible in theory to envisage non-parametric series estimators for these three variables, it is necessary in practice to make assumptions about the form taken by this function. We chose to introduce the weighting variable as an additional regressor, i.e. \(E(y_i | s_i, t_i, \sigma_i) = \alpha \sigma_i + f(s_i, t_i) \).

5.6 The support

Heckman et al. (1998) pointed out the importance of the so called support condition in the case of single treatment when independence conditional on observable is assumed. This condition is also likely to be important in our case of a continuous treatment. The estimations of the parameters \(E_i \) are to be compared with each other. They therefore are only of interest if it is possible to estimate quantities of the type \(E(y_i(t_0) - y_i(t_1)) \), which necessitate estimation of both \(E(y_i | s_i, t_i = t_0) \) and \(E(y_i | s_i, t_i = t_1) \). For this, it is necessary that the score \(s_i \) belongs to the intersection of the supports of the distribution of the score conditional on treatments \(t_0 \) and \(t_1 \). Since one wants to make comparisons over an interval of treatment variables \(t \in [u, \bar{t}] \), it is necessary to examine the support of the conditional distribution of the score, knowing treatment \(f(s, t) \), and to determine for the interval \([u, \bar{t}] \) the common support of the corresponding distributions \(S = \bigcap_{t \in [u, \bar{t}]} \text{Supp}(f(s, t)) \). The parameters in which we are interested in this case are then the local parameters \(E(y_i(t) | s_i \in S) \) which can be compared two by two. In the case of parameter \(E_2 \), the support condition is automatically met as long as the conditional distribution of the score depends continuously on the treatment. However, if one wants to compare the effect of a marginal increase in the treatment for different values of the treatment, we have here too to consider the local parameters \(E(\partial y_i(t_0) / \partial t | s_i \in S) \). In the case of parameter \(E_3 \) one wants to find for a firm with treatment \(t_i \) and score \(s_i \) a counterfactual \(E(y_i(t_0) | s_i) = E(y_i | s_i, t_i = 0) \). This can be done only for firms with score belonging to \(\text{Supp}(f(s|t = 0)) \cap \text{Supp}(f(s|t = t_i)) \). Thus the common support in this case is \(S = \bigcup_{t \in [u, \bar{t}]} \{ \text{Supp}(f(s|t = 0)) \cap \text{Supp}(f(s|t = t_i)) \} \). On the other hand, the support associated with parameter \(E_4 \) is the total support.
6. Results

6.1 The estimation of the score

The implementation of our semi-parametric estimators requires to compute the score. For this purpose, we assume that the distribution of the variable for the \textit{ex ante} average labor cost reduction conditional on the control variables is a bivariate function of the \textit{ex ante} cost reduction and an indicator of dimension 1 of the control variables, defined as a linear combination of these variables, i.e.

$$l(t|x) = f(t, x\beta)$$

We consider several ways of computing the score. The first way amounts to use the fact that for any function h, there exists a function h^* such that:

$$E(h(t)|x) = h^*(x\beta).$$

We consider the transformation $h(t) = \log(t/(0.10 - t))$ that defines the set of real values as support for the \textit{ex ante} cost reduction and we assume that the corresponding h^* function is the identity. The score used in estimation is then defined as: $s(x) = h^{-1}(x\beta)$ and therefore has values belonging to the range 0-10%.

The second way to estimate the score is to use the fact that their exist a function η unknown such that

$$E(t|x) = \eta(x\beta)$$

Estimation of $\hat{\beta}$ can be performed using semiparametric quasi maximum likelihood (SPQML) as proposed in Newey (1994), the unknown function being approximated by a polynomial function. More precisely, the estimation $\hat{\beta}$ of the parameter β is defined as

$$\hat{\beta} = \arg \min_{\beta} \sum (t_i - \hat{\eta}(x_i \beta))^2$$

$\hat{\eta}(x\beta)$ being defined as $\hat{\eta}(x\beta) = \sum_{k=0}^{K} \hat{\alpha}_k P_k(x\beta)$ with $\hat{\alpha}_k$ the coefficient of the linear projection of t_i on the set of functions $P_k(x, \beta)$. We chose these last functions to be the Chebytchev polynomial functions of the logit transformation $2/(1 + \exp(-x\beta)) - 1$. As shown in Newey (1994) there is no loss of efficiency in the estimation of $\hat{\beta}$ and no correction to be made in the computation of its standard errors associated to the estimation of the unknown function η. In this case the score is defined as $0.10/(1 + \exp(-x\beta))$, and has also values belonging to the range 0-10%.

In the end using the first procedure, we selected some 40 variables out of the 50 or so initially introduced. The eliminated variables are a few sectoral competition indicators as well as some financial variables. The representation of the treatment variable by conditioning variables was satisfactory, with $R^2 = 0.5$ in both manufacturing and non-manufacturing. The variance of the treatment variable is then substantially reduced but an important source of variability still persists that will make it possible to compare firms with identical scores but different \textit{ex ante} cost reductions.

The estimated coefficients where used as starting values for the semiparametric estimation procedure with a polynomial approximation of degree 1, imposing the value of the intercept and the coefficient of one given variable (one sectoral dummy variable that was found strongly significant) to be the same as in the parametric procedure. We used estimated values as starting values for degree 2 and so on. Starting
degree 3, convergence was reached in both sectors after only 1 iteration and no changes was detected neither in the objective value nor in the estimated values of the parameters. We thus adopt degree 3 for the polynomial approximation in both sectors. Results are qualitatively the same for manufacturing and non manufacturing and for both estimation procedure. In table D1 of appendix D we present results of the SPQML estimation.

6.2 Results of the semi-parametric estimation

The degree of the polynomial approximation used in the computation is chosen using the cross validation criteria:

$$\text{cv}(d) = \frac{\sum_j \left(y_j - x_j \hat{b}_{-j}(d) \right)^2}{N}$$

where $\hat{b}_{-j}(d)$ is the vector of the estimated coefficient of a degree d polynomial approximation of the unknown regression function using all observation but the j^{th}.

[Table 4: Cross validation criteria in manufacturing and non manufacturing sectors]

Table 4 shows that the cross validation criteria is minimized in both sectors for degree 3 which we thus retain in the computation of our parameters of interest although we will examine the sensitivity of the results to this choice.

We first show the estimations of parameters E_1 (UT) and E_2 (MIUT), and examine various features such as the heterogeneity of the effect of the treatment, the accuracy of the estimations and the importance of selectivity biases. We then go on to examine the effects of the payroll tax subsidies on the basis of parameters E_3 (TT) and E_4 (MIT). We also examine weighted forms of these last two parameters. We then discuss various robustness issues such as the support condition, the choice of the degree of the polynomial approximation, the method used to compute the score and the sensitivity to the choice of control variables. Finally we provide estimations for a broader set of output variables enabling us to shed light into the underlying mechanisms at work.

6.2.1 Heterogeneity of the effect

Figures in appendix E1 and E2 respectively shows the estimation results of parameters $E(y(t) - y(0))$ and $E(\partial y(t)/\partial t)$ for both manufacturing and non manufacturing sectors. These estimations are obtained as $\sum_i \hat{g}(s_i, t) - \hat{g}(s_i, 0) / N$ and $\sum_i \partial \hat{g}(s_i, t) / \partial t / N$ where \hat{g} is the estimation of the polynomial approximation of degree 3 of the unknown function g. Parameters are computed for 50 treatment values regularly spaced over the interval (0,0.1). The 5% confidence interval appearing in the figure (doted lines) are obtained with 500 bootstrap replications.

The effect of a marginal increase in treatment is quite constant in manufacturing with a value around 3%. It exhibits a slight increase for the largest values of the treatment but become very imprecise at this level. On the opposite, the marginal effect is not constant in the non manufacturing sector. Initially quite

6 Cross validation could have been another way to determine the adapted degree of approximation and we will use it in the implementation of our estimation of function $g(s, t)$. However, in the case of the score estimation this would have led to a too intensive computational burden.
nil for small values of the treatment, it then rises sharply to reach a maximum value of 5% for an \textit{ex ante} reduction of 2.5% and then decreases. Negative values for the parameter are obtained for the largest values of the treatment. As a result parameter $E(y(t) - y(0))$ exhibits a clear upward sloping pattern.

Figure E3 plots simultaneously estimated values of parameters $E(y|t)$ as well as $E(y(0)|t)$. It clearly shows the strong bias that would be associated when ignoring the simultaneity of treatment received and potential outcomes and also that firms that benefited from the more intensive treatment were also firms that would have experienced the more adverse evolution of their employment.

In both sectors estimations are fairly precise for small values of the treatment, where most observations are located. For large values of the treatment estimation become very imprecise due to a smaller number of observation in this region.

6.2.2 Employment effect

In Table 5 we present the parameter estimates for the growth rate of employment from a polynomial approximation of degree 3. We present results for both manufacturing and non manufacturing sectors. Four parameters are presented. These are the effect of the treatment on the treated E_3 (TT) and the effect of a marginal increase of treatment E_4 (MIT), both weighted and non weighted. Standard errors are obtained by bootstrap with 500 replications. All the parameters point to an important effect of the policy implemented. The effect of a marginal increase of treatment is around 3 depending on the sector and mostly on the weight scheme. The aggregated effects on the growth rate of employment are respectively 2.24% in manufacturing and 3.15% in non manufacturing. These new estimations can be used to provide an order of magnitude of the number of job created or safeguarded. Taking a basis of 5.7 millions of employees in manufacturing and of 9.1 millions in non manufacturing we find that 415,000 jobs have been created of safeguarded with a 5% confidence interval of (270,000, 560,000).

[Table 5 : Semi parametric estimation of Treatment Effect]

Figures 3a and 3b present results obtained with different degree of the polynomial approximation of the unknown function $g(s,t)$. We only present the results obtained for the weighted effect of treatment on the treated WTT. The figure shows the point estimate of the parameter as well as its 5% confidence interval, computed using bootstrap with 500 replications. The results show that in the manufacturing sectors increasing degree above 3 only impacts the widening of the confidence interval. The picture is different in non manufacturing sector and less clear. Increasing the degree does not change significantly the widening of the confidence interval and leads to fluctuation in the point estimate.

[Figure 3a : Sensitivity to the degree of the polynomial approximation - Manufacturing – Weighted effect of treatment on the treated]
All the parameters exhibit impressive changes compared to results obtained using the previous direct procedure. For example, the weighted average growth rate of employment is increased from 1.3% to 2.3% in manufacturing. Similarly in non-manufacturing the same parameter is increased from 2.4 to 3.2. Although there is also a substantial increase in standard errors, these changes in results point to the severe drawbacks associated to a procedure assuming linearity and homogeneity of effects and constructing counterfactuals in a very constrained way.

Table 6 presents further results corresponding to various restrictions on the specification of the firm response. We examine the sensitivity of the results when imposing linearity of the response and both linearity and homogeneity. For each parameter TT and MIT, the first line recall results for the general unconstrained specification. The second line presents results when imposing linearity of the effect of the ex ante reduction in labor cost. The third line present results obtained when imposing both linearity and homogeneity. All the unknown functions of the score entering these specifications are polynomial functions of degree three and we still use Chebyshhev polynomials. Clearly, imposing linearity does not affect results in manufacturing, but imposing homogeneity matters. This is not a surprise given the results of the estimation of parameters IUT presented in the previous section. The weighted average growth rate decrease from 2.3% to 1.9% when both linearity and homogeneity are imposed, but remain however higher than with the constrained earlier specification (1.3%). In non-manufacturing on the opposite, both linearity and homogeneity matters strongly. When imposing linearity the estimation of the weighted effect of the treatment is strongly downward biased.

6.2.3 Robustness Check
We examine the robustness of our results along different dimensions. We first examine the sensitivity of the results to the choice of the control variables. We then examine the effect of the restriction to the common support. Last we examine the sensitivity to the way the score is computed.

To examine the sensitivity of the result to the choice of control the variables we proceed in the same way than with the former estimation method. Results are presented in Table 7. The set of control variables is divided into 5 subsets. For each of these subsets we perform the global analysis using only the considered subset as control variables (appearing as the columns labeled “Just with”) and using all the variables but the considered subset (appearing as the columns labeled “Without”). In each case we presented the four main parameters of interest: TT, WTT, MIT and WMIT. Results clearly show here also that the key subset is composed by the firm variables in level. It also appears that in both sectors using only this subset lead to higher values of the parameters of interest.

We also examine the sensitivity of the results when restricting observations to the support adapted for the estimation of parameter E_3. The common support is determined using 20 treatment classes of
identical length equal to 0.5%. In each of these classes, we calculate different percentiles. Some are shown in figures Fa and Fb of appendix F. This figure clearly shows the very strong concentration of the score around low values for low values of treatment and the gradual widening-out as treatment increases. As a result, for a firm with a low value of the score, it is always possible to find similar firms with low treatment. On the opposite, when the score become higher, no similar firm with a low treatment may be found. Thus the common support is defined as the interval of zero score and a maximum value chosen on the basis of the distribution of the score for the low treatment class. We consider this above value to be 3% in manufacturing and 4% in non-manufacturing. Results when restricting the computation of the parameters of interest to the common support are presented in Table 8. Regressions are performed on the whole sample but parameters of interest are computed using only observations on the common support. The polynomial approximation is also of degree 3. We do not detect any substantial changes in the parameters of interest.

We also present in Table 8 the results obtained when using the crude score following the procedure described in section 7. A polynomial approximation of degree 3 is also used to estimate the unknown function g. No significant changes are observed in the manufacturing sector. However in the non-manufacturing sector, changes are more substantial. The parameters obtained with the crude score are substantially higher, with an order of magnitude of one, two or even more than one standard error.

| Table 8 : Semi parametric estimation of Treatment Effect – Robustness to the support and score estimation |

6.2.4 Substitution and profitability effects

Our previous results point to strong employment effects of payroll tax subsidies for low wage workers. However, the method we use does not help in understanding the underlying effects of such a policy. The substantial evolutions in employment can be related to two broad types of mechanisms. The first one corresponds to substitutions between factors of production i.e. an increase of the unskilled-labor content of production. The second corresponds to a profitability effect, i.e. an increase in all factors of production due to an increase in demand if the reduction in production costs is passed in prices. In this section we implement our methodology on a broader set of explanatory variables in order to obtain some insight about these underlying effects. Tables 9 and 10 present the results obtained for the semiparametric estimation of parameter E_3 (TT and WTT) and E_4 (MIT and WMIT) for a broader set of variables. We examine the effect of payroll tax subsidies on the average labor cost, the share of unskilled workers, the capital labor ratio, the productivity of capital, the labor productivity, the stock of capital and value added.

There are some drawbacks in these measures. First, the productivity of each factor as well as the value added are measured with accounting data. These data are in value and we use the aggregate price at the two digit level as deflator. These measures thus do not take into account the possible effect of payroll tax subsidies on individual prices. Second, unskilled labor is defined according to occupations and do not perfectly covers workers paid below 1.33 minimum wage as shown in Table 11.

Our results suggest that strong substitution effects may have been at work. This can be primarily seen in the negative effect on average labor cost, which may be related to composition effect of the workforce in favor of least paid workers. This can also be seen on the negative effect on the share of unskilled workers. Our results indicate that substitutions also operate between labor and capital, with the capital labor ratio falling under the impact of tax subsidies in each sector. We also observe a decrease in the
productivity of capital and labor in both manufacturing and non manufacturing sectors. This is related in both cases to an increase in the volume of employment and capital but also to a stagnation and even a decrease in value added. To interpret these results assume a simple demand function with constant price elasticity $d \log q = -\epsilon d \log p$ then the firm revenue is simply $d \log pq = (1 - \epsilon)d \log p$. Assuming a constant elasticity of substitution between labor and capital and constant return to scale we have $d \log q - d \log k = \sigma(d \log c - d \log p) = -\sigma d \log p$ when assuming no effect on the cost of capital. Thus the changes in the variables of interest we can measure are $d \log k = (\sigma - \epsilon)d \log p$, $d \log pq - d \log k = (1 - \sigma)d \log p$ and $d \log pq = (1 - \epsilon)d \log p$. As a result, we expect changes in these variables only if payroll tax subsidies are passed into prices. Our results on capital stock and productivity of capital are consistent with the previous computations if prices falls and the elasticity of substitution is small, i.e. below 1 and the price elasticity of demand. Notice that the comparison of the changes in the capital labor ratio and the changes in the average labor cost are consistent with an elasticity of substitutions around 0.5. To fix ideas, assuming such a value, the effect of payroll tax reduction on prices should be half the effect on the productivity of capital i.e. an average elasticity of 0.7, which is small given the strong effect on wages. However we expect also an increase in the value added, even not deflated as long as the price elasticity of demand is above 1. We observe a non significant but positive effect in manufacturing of payroll tax subsidies on value added which suggest a value of the price demand elasticity above and close to 1, but we observe negative effects in non manufacturing that may be significant (average slope parameter).

These results show therefore that the main underlying effects are probably substitutions and mostly substitution among workers. Profitability effects may also have been at work but the price effect seems to be small. Changes in value added are of small magnitude when they have the right sign. The only change that may be related to a profitability effect lays in the capital. This may however receive an alternative explanation

[Table 9 : Semi parametric evaluation of a marginal increase of the exante reduction in labor cost]

[Table 10 : Semi parametric evaluation of growth rates due to payroll tax reduction for low wage workers.]

[Table 11 : Unskilled workers and minimum wage]

Indeed, all of our results point to a strong and quick effect of the policy implemented. The question is: is it reasonable to obtain so strong effect occurring so rapidly. Substitution effects as well as profitability effects are usually considered to take time. For example our results indicate that labor was substituted to capital and one may expect this substitution to occur only after a long period of time. Similarly we also observe evolution among the work force in favor to less skilled workers and this also requires time.

However when the counterfactual is an ongoing process of capital to labor substitution, of skilled to unskilled labor substitution and of a reduction in the capacity of production of unskilled intensive firms, then the effects of factor price changes can be more observed more quickly. Figures E3, show for both sectors the expectation of the counterfactual of employment evolution conditional to treatment: $E(y_i|0)t$ and the and the expectation of observed output variable conditional to treatment: $E(y_i|t)$. We clearly observe that the counterfactual is negative and sharply decreasing
with treatment. On the opposite the expectation of employment conditional to treatment is not related to treatment. This suggests that the main effect of the policy was to stop an ongoing process of unskilled job destruction and not one of job creation, although there is likely a large amount of heterogeneity. This last conclusion is consistent with results obtained in Kramarz and Philippon (2001). They show using individual employee data, the main effect of the policy consist of a reduction of employment to unemployment transition compared with employment to employment transitions. They do not observe an increase in the transition of unemployment to employment compared with employment to employment transitions.

This interpretation of our results is also consistent with macro-evolution at the time the policy took place. The payroll tax subsidies for low wage workers took place in a macroeconomic context that had worsened considerably (figure 4), following a long period of stagnation in activity since the beginning of the 1990s that lasted until 1994. During this period, employment had fallen sharply. The year 1994 marked a break in this tendency with a substantial upturn in employment. Table 12 clearly shows that this upturn was associated with a decrease in the destruction rate of employment from 24.2 over the upswing period 1988-1991 and 24.5 over the recession period 1991-1994 to 20.5 over the period 1994-1997. Similarly, the decline in the productivity of capital stopped starting 1994, together with a rise in the job-content of growth (figure 2). The evolution in the productivity of capital clearly shows that the long run downward trend, virtually uninterrupted since the beginning of the 1980s, was suddenly halted in 1993 and even turned upward starting in 1997. Another feature was a halt to the decline in the proportion of unskilled workers in total employment at the beginning of the 1990s (figure 5).

7 Conclusion

The aim of this paper is to evaluate the effect of the payroll tax reduction for low wage workers implemented in France in the middle 90’s. The study is based on the calculation of the firm’s ex ante labor cost reduction attributable to the extension of the original policy in 1995 and 1996. It is build using an extensive data source providing the wage distribution inside firms in 1994 for each firm. The underlying principle is to compare the results for firms benefiting from different ex ante reductions. For this purpose, we develop a statistical model, based on the Rubin causal model, adapted to the continuous treatment case. We define the parameters of interest in such a framework and propose a semi-parametric estimation procedure using series estimators.

The identifying assumption we make is that the ex ante labor cost reduction (the treatment) and potential outcomes (the increase in employment when receiving a given treatment) are independent conditional on observable. We use a simple factor supply-and-demand model to discuss this condition and the choice of control variables. It appears that we have to control for the heterogeneity of the work force, heterogeneity of technological parameters, product market competition and unobserved demand and productivity shocks. We introduce a broad set of control variables including information on past performance in level and evolution, detailed information about the skill structure, various competition

7 Defined following Davis and Haltiwanger 1992.
variables at the sector level and information about the financial structure and the cost of capital. The introduction of these control variables plays a key role and we show that among this broad set of information the past level of productivity is of primary importance.

We find that payroll tax subsidies introduced between 1994 and 1997 had a strong effect on employment. The average growth rate attributable to the policy is 2.24 in manufacturing and 3.15 in non-manufacturing and may have created or safeguarded 420,000 jobs in the economy over the period 1994-1997. We find that the effect on employment mainly reflect substitutions between categories of employee as well as between labor and capital. Profitability effects may also have occurred but are probably of less importance. These strong effects may have occurred quickly because the counterfactual evolution of employment in firms that benefited most from the policy was a strong reduction in their employment.

Our results show that the impact of a marginal increase in tax subsidies is very heterogeneous within the population and may differ from one treatment value to another. They show the importance of tackling the question of evaluating subsidies in taxes in a suitable causal framework. Introducing control variables into a direct regression of output variables on the \textit{ex ante} cost reduction would lead to an erroneous evaluation of its effect.

Our evaluation is not based on the specification and estimation of structural models. The effects we measure are a combination of different structural parameters (elasticities of substitution, demand elasticities and factor-supply elasticities), within which it is not possible to distinguish the different components. As a result, our evaluation does not require the estimation of elasticities of substitution between various categories of worker, nor the elasticity of the demand for labor to its cost. However, its main disadvantage is to be valid only for the measure in force over the period 1994-1997. The evaluations cannot be used to study alternative policy such as, for example, the extension of the tax cuts to a broader population or, on the contrary, the intensification of payroll tax subsidies for the population already involved, or, modifications in the minimum wage. This study shows, nevertheless, that the attempts to change the distribution of earnings in the economy, especially for the lower paid, have substantial effects on employment.
Bibliographie

– Rosenbaum P. and D. Rubin, 1983, the central role of the propensity score in observational studies for causal effects, Biometrika 70(1) : 41-55.
Figure 1 – Rules for the reduction in payroll taxes form 1993 to 1998
Figure 2 - Distribution of the ex ante reduction of labor cost in manufacturing and non manufacturing sectors.

Note: Kernel estimates of the density for positive values of the ex ante reduction.
Figure 3a: Sensitivity to the degree of the polynomial approximation - Manufacturing – Weighted effect of treatment on the treated

Figure 3b: Sensitivity to the degree of the polynomial approximation – Non Manufacturing – Weighted effect of treatment on the treated
Figure 4 – Aggregate evolutions between 1978 and 1996, private sector

source: National Account (logarithm normalized to zero in 1994)
Figure 5 - Share of unskilled workers between 1982 and 1996

Table 1 - Ex ante reduction of labor cost

<table>
<thead>
<tr>
<th>Percentage of firms</th>
<th>0%</th>
<th>0-1%</th>
<th>1-6%</th>
<th>6-9.5%</th>
<th>9.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private sector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of firms</td>
<td>7.2</td>
<td>39.3</td>
<td>50.2</td>
<td>2.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Percentage of employees</td>
<td>1.0</td>
<td>65.6</td>
<td>32.7</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of firms</td>
<td>5.6</td>
<td>45.9</td>
<td>46.9</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Percentage of employees</td>
<td>0.8</td>
<td>73.3</td>
<td>25.6</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Non Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of firms</td>
<td>8.3</td>
<td>35.1</td>
<td>52.4</td>
<td>3.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Percentage of employees</td>
<td>1.3</td>
<td>56.4</td>
<td>41.3</td>
<td>0.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Note: Obtained from the study sample involving 87,720 firms, of which 34,371 (39%) are in manufacturing sectors and 53,349 (61%) in non manufacturing. Employment in these firms is 3,772,941, of which 2,053,777 (54%) are in manufacturing sectors and 1,719,164 (46%) in non manufacturing.

Table 2: Effect of the ex ante reduction in labor cost on some firm variables between 1994 and 1997.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Elasticities</th>
<th>Growth rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manufacturing</td>
<td>Non Manufacturing</td>
</tr>
<tr>
<td>Employment(^a)</td>
<td>1.60</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>Average labor cost(^a)</td>
<td>-2.30</td>
<td>-2.25</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>Share of unskilled</td>
<td>0.38</td>
<td>0.49</td>
</tr>
<tr>
<td>workers (^a)</td>
<td>(0.09)</td>
<td>(0.07)</td>
</tr>
</tbody>
</table>

Note: These results are obtained by the OLS regression of the variable of interest on the ex ante reduction in labor cost and a set of control variables in 1994 and for some of them in evolution over the past period. They are performed on 32,459 observations in manufacturing and 48,930 in non manufacturing. Firms with a zero ex ante reduction in labor costs were discarded. The \(^a\) superscript means that the variable is expressed in logarithm.
Table 3: Sensitivity to control variables.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Manufacturing Just with</th>
<th>Manufacturing Without</th>
<th>Non Manufacturing With</th>
<th>Non Manufacturing Without</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>1.60</td>
<td>0.58</td>
<td>1.78</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.11)</td>
<td>(0.10)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>General in level</td>
<td>1.84</td>
<td>0.51</td>
<td>1.73</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.12)</td>
<td>(0.09)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>General in difference</td>
<td>0.47</td>
<td>1.83</td>
<td>0.01</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.15)</td>
<td>(0.08)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Financial</td>
<td>0.39</td>
<td>1.60</td>
<td>0.06</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.14)</td>
<td>(0.08)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Share</td>
<td>0.51</td>
<td>1.69</td>
<td>0.17</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.14)</td>
<td>(0.09)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>Sectoral</td>
<td>0.69</td>
<td>1.41</td>
<td>0.16</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.12)</td>
<td>(0.08)</td>
<td>(0.10)</td>
</tr>
</tbody>
</table>

Note: These results are obtained by the OLS regression of the variable of interest on the ex ante reduction in labor cost and a set of control variables in 1994 and for some of them in evolution over the past period. They are performed on 32,459 observations in manufacturing and 48,930 in non manufacturing. Firms with a zero ex ante reduction in labor costs were discarded. For each sector the column “Just with” correspond to the case where only the considered variables have been introduced as control variables. The second column “Without” correspond to the case where all variables have been introduced but the set of variables considered. Dummy variables at the one digit level have always been introduced.

Table 4: Cross validation criteria in manufacturing and non manufacturing sectors

<table>
<thead>
<tr>
<th>Degree</th>
<th>Number of regressors</th>
<th>Manufacturing</th>
<th>Non manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>29</td>
<td>0.0636641</td>
<td>0.0829775</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>0.0636503</td>
<td>0.0829555</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>0.0636382</td>
<td>0.0829560</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>0.0636278</td>
<td>0.0829536</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>0.0636305</td>
<td>0.0829883</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0.0637542</td>
<td>0.0830954</td>
</tr>
</tbody>
</table>
Table 5: Semi parametric estimation of Treatment Effect

<table>
<thead>
<tr>
<th>Variables</th>
<th>Manufacturing</th>
<th>Non Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>1 Employment</td>
<td>1 Employment</td>
</tr>
<tr>
<td>Employment (log)</td>
<td>2.86 (0.26)</td>
<td>3.38 (0.39)</td>
</tr>
<tr>
<td></td>
<td>Employment</td>
<td></td>
</tr>
<tr>
<td>Effect of a Marginal Increase of Treatment (MIT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment (log)</td>
<td>3.59 (0.53)</td>
<td>2.24 (0.30)</td>
</tr>
<tr>
<td></td>
<td>Employment</td>
<td></td>
</tr>
<tr>
<td>Effect of Treatment on the Treated (TT)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: These figures are the semi parametric estimates of the parameter $E_{\gamma}^{\partial q} = E(\gamma_1 (y_1 - y_1(0)))$ and $E_{\gamma t}^{\partial q} = E(\partial (y_1(t) - y_1(t))/\partial t)$, obtained with and without weighting firms by their employment. They are performed on 32,459 observations in manufacturing and 48,930 in non manufacturing. Firms with a zero ex ante reduction in labor costs were discarded.
Table 6: Semi parametric estimation of Treatment Effect - Alternative specification

<table>
<thead>
<tr>
<th>Variables</th>
<th>Manufacturing</th>
<th>Non Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>1 Employment</td>
<td>1 Employment</td>
</tr>
</tbody>
</table>

Effect of a Marginal Increase of Treatment (MIT)

<table>
<thead>
<tr>
<th>Reference</th>
<th>2.86</th>
<th>3.38</th>
<th>2.54</th>
<th>3.31</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(s, t) = g_0(s) + t g_1(s)$</td>
<td>2.92</td>
<td>3.42</td>
<td>2.93</td>
<td>3.60</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.31)</td>
<td>(0.15)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>$g(s, t) = g_0(s) + \lambda t$</td>
<td>2.32</td>
<td>2.32</td>
<td>2.15</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.16)</td>
<td>(0.12)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>$g(x, t) = x + \lambda t$</td>
<td>1.60</td>
<td>1.60</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.10)</td>
<td>(0.10)</td>
</tr>
</tbody>
</table>

Effect of Treatment on the Treated (TT)

<table>
<thead>
<tr>
<th>Reference</th>
<th>3.59</th>
<th>2.24</th>
<th>2.55</th>
<th>3.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(s, t) = g_0(s) + t g_1(s)$</td>
<td>3.65</td>
<td>2.28</td>
<td>4.56</td>
<td>3.95</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.18)</td>
<td>(0.24)</td>
<td>(0.67)</td>
</tr>
<tr>
<td>$g(s, t) = g_0(s) + \lambda t$</td>
<td>3.49</td>
<td>1.86</td>
<td>4.33</td>
<td>2.83</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.14)</td>
<td>(0.24)</td>
<td>(0.48)</td>
</tr>
<tr>
<td>$g(x, t) = x + \lambda t$</td>
<td>1.28</td>
<td>2.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.19)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: See Table 5
Table 7: Sensitivity of the result to the choice of control variables

<table>
<thead>
<tr>
<th></th>
<th>TT Just with</th>
<th>WTT Just with</th>
<th>MIT Just with</th>
<th>WMIT Just with</th>
<th>TT Without</th>
<th>WTT Without</th>
<th>MIT Without</th>
<th>WMIT Without</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>2.55</td>
<td>3.15</td>
<td>2.54</td>
<td>3.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>3.23</td>
<td>4.70</td>
<td>2.76</td>
<td>4.61</td>
<td>0.71</td>
<td>0.59</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>Difference</td>
<td>-0.02</td>
<td>-0.03</td>
<td>-0.04</td>
<td>-0.25</td>
<td>2.92</td>
<td>3.60</td>
<td>2.80</td>
<td>3.70</td>
</tr>
<tr>
<td>Share</td>
<td>0.37</td>
<td>0.30</td>
<td>-0.15</td>
<td>-0.39</td>
<td>3.10</td>
<td>3.66</td>
<td>2.79</td>
<td>3.67</td>
</tr>
<tr>
<td>Financial</td>
<td>0.49</td>
<td>0.30</td>
<td>0.17</td>
<td>-0.04</td>
<td>2.43</td>
<td>3.09</td>
<td>2.50</td>
<td>3.23</td>
</tr>
<tr>
<td>Sectoral</td>
<td>0.94</td>
<td>0.58</td>
<td>0.52</td>
<td>0.33</td>
<td>2.23</td>
<td>3.03</td>
<td>2.36</td>
<td>3.17</td>
</tr>
</tbody>
</table>

Non Manufacturing

<table>
<thead>
<tr>
<th></th>
<th>TT Just with</th>
<th>WTT Just with</th>
<th>MIT Just with</th>
<th>WMIT Just with</th>
<th>TT Without</th>
<th>WTT Without</th>
<th>MIT Without</th>
<th>WMIT Without</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>3.59</td>
<td>2.24</td>
<td>2.86</td>
<td>3.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>4.03</td>
<td>2.57</td>
<td>3.16</td>
<td>3.83</td>
<td>1.38</td>
<td>0.81</td>
<td>0.68</td>
<td>0.81</td>
</tr>
<tr>
<td>Difference</td>
<td>0.96</td>
<td>0.51</td>
<td>0.58</td>
<td>0.63</td>
<td>4.11</td>
<td>2.50</td>
<td>3.12</td>
<td>3.66</td>
</tr>
<tr>
<td>Share</td>
<td>1.27</td>
<td>0.74</td>
<td>0.56</td>
<td>0.61</td>
<td>3.57</td>
<td>2.40</td>
<td>3.16</td>
<td>3.82</td>
</tr>
<tr>
<td>Financial</td>
<td>0.66</td>
<td>0.36</td>
<td>0.37</td>
<td>0.39</td>
<td>3.69</td>
<td>2.28</td>
<td>2.90</td>
<td>3.39</td>
</tr>
<tr>
<td>Sectoral</td>
<td>1.30</td>
<td>0.70</td>
<td>0.69</td>
<td>0.59</td>
<td>3.36</td>
<td>2.07</td>
<td>2.61</td>
<td>3.08</td>
</tr>
</tbody>
</table>

Manufacturing

Note: For each row the results presented for the four main parameters are obtained using only the considered subset as explanatory variables in the score (left panel) and all the variables but the considered subset (right panel). Standard errors are obtained via 500 bootstrap replications.
Table 8: Semi parametric estimation of Treatment Effect – Robustness to the support and score estimation

<table>
<thead>
<tr>
<th>Variables</th>
<th>Manufacturing</th>
<th>Non Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Employment</td>
<td></td>
<td>1 Employment</td>
</tr>
</tbody>
</table>

Effect of a Marginal Increase of Treatment (MIT)

<table>
<thead>
<tr>
<th></th>
<th>Manufacturing</th>
<th>Non Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>2.86</td>
<td>2.54</td>
</tr>
<tr>
<td>(0.26)</td>
<td>(0.19)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Common support</td>
<td>3.03</td>
<td>2.76</td>
</tr>
<tr>
<td>(0.29)</td>
<td>(0.20)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>Crude score</td>
<td>2.89</td>
<td>3.19</td>
</tr>
<tr>
<td>(0.27)</td>
<td>(0.19)</td>
<td>(0.27)</td>
</tr>
</tbody>
</table>

Effect of Treatment on the Treated (TT)

<table>
<thead>
<tr>
<th></th>
<th>Manufacturing</th>
<th>Non Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>3.59</td>
<td>2.55</td>
</tr>
<tr>
<td>(0.53)</td>
<td>(0.52)</td>
<td>(0.60)</td>
</tr>
<tr>
<td>Common support</td>
<td>3.22</td>
<td>3.05</td>
</tr>
<tr>
<td>(0.42)</td>
<td>(0.41)</td>
<td>(0.63)</td>
</tr>
<tr>
<td>Crude score</td>
<td>3.83</td>
<td>3.67</td>
</tr>
<tr>
<td>(0.54)</td>
<td>(0.53)</td>
<td>(0.68)</td>
</tr>
</tbody>
</table>

Note: See Table 5. Regressions are performed on the whole sample but parameters of interest are computed using only observation on the common support (0,3%) for manufacturing, (0,4%) for non manufacturing.
Table 9: Semi parametric evaluation of a marginal increase of the exante reduction in labor cost

<table>
<thead>
<tr>
<th></th>
<th>Manufacturing</th>
<th>Non Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TT</td>
<td>WTT</td>
</tr>
<tr>
<td>Employment</td>
<td>2.86 (0.26)</td>
<td>3.38 (0.39)</td>
</tr>
<tr>
<td>Average labor cost</td>
<td>-2.95 (0.21)</td>
<td>-3.02 (0.31)</td>
</tr>
<tr>
<td>Share of unskilled</td>
<td>0.66 (0.15)</td>
<td>0.61 (0.23)</td>
</tr>
<tr>
<td>workers</td>
<td>Capital</td>
<td>1.22 (0.29)</td>
</tr>
<tr>
<td>Capital labor ratio</td>
<td>-1.64 (0.33)</td>
<td>-1.72 (0.51)</td>
</tr>
<tr>
<td>Productivity of capital</td>
<td>-1.17 (0.33)</td>
<td>-1.25 (0.50)</td>
</tr>
<tr>
<td>Labor productivity</td>
<td>-2.81 (0.26)</td>
<td>-2.97 (0.38)</td>
</tr>
<tr>
<td>Value added</td>
<td>0.04 (0.29)</td>
<td>0.40 (0.43)</td>
</tr>
</tbody>
</table>

Note: These figures are the semi parametric estimates of the parameter \(E_{t+1}^{\frac{\partial}{\partial t}} = E(\partial y_{t+1}/\partial t) \), obtained with and without weighting firms by their employment. They are performed on 32.459 observations in manufacturing and 48.930 in non manufacturing. Firms with a zero ex ante reduction in labor costs were discarded.
Table 10: Semi parametric evaluation of growth rates due to payroll tax reduction for low wage workers.

<table>
<thead>
<tr>
<th></th>
<th>Manufacturing</th>
<th>Non Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TT</td>
<td>WTT</td>
</tr>
<tr>
<td>Employment</td>
<td>3.59</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td>(0.53)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>Average labor cost</td>
<td>-4.20</td>
<td>-2.28</td>
</tr>
<tr>
<td></td>
<td>(0.43)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>Share of unskilled workers</td>
<td>1.50</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>Capital</td>
<td>1.41</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>(0.58)</td>
<td>(0.32)</td>
</tr>
<tr>
<td>Capital labor ratio</td>
<td>-2.19</td>
<td>-1.22</td>
</tr>
<tr>
<td></td>
<td>(0.65)</td>
<td>(0.36)</td>
</tr>
<tr>
<td>Productivity of capital</td>
<td>-1.69</td>
<td>-0.95</td>
</tr>
<tr>
<td></td>
<td>(0.65)</td>
<td>(0.36)</td>
</tr>
<tr>
<td>Labor productivity</td>
<td>-3.88</td>
<td>-2.17</td>
</tr>
<tr>
<td></td>
<td>(0.52)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>Value added</td>
<td>-0.29</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.57)</td>
<td>(0.31)</td>
</tr>
</tbody>
</table>

Note: These figures are the semi parametric estimates of the parameter $E_y = E(y_1 - y_0)$, obtained with and without weighting firms by their employment. They are performed on 32,459 observations in manufacturing and 48,930 in non manufacturing. Firms with a zero ex ante reduction in labor costs were discarded.
Table 11 Unskilled workers and minimum wage

<table>
<thead>
<tr>
<th>%</th>
<th>Unskilled</th>
<th>Skilled</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 1.3 minimum wage</td>
<td>15.66</td>
<td>15.27</td>
<td>30.82</td>
</tr>
<tr>
<td>Above 1.3 minimum wage</td>
<td>7.17</td>
<td>62.00</td>
<td>69.18</td>
</tr>
<tr>
<td>Total</td>
<td>22.73</td>
<td>77.27</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 12: Employment creation and destruction rate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth rate</td>
<td>7.4</td>
<td>-0.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Creation rate</td>
<td>31.6</td>
<td>23.7</td>
<td>23.5</td>
</tr>
<tr>
<td>Destruction rate</td>
<td>-24.2</td>
<td>-24.5</td>
<td>-20.5</td>
</tr>
</tbody>
</table>

Defined following Davis and Haltiwanger 1992.
Appendix A: Labor demand-supply model with heterogeneous workers.

We develop a simple theoretical model to: i) identify the factors that affect the firm’s ex ante labor cost reduction, ii) assess the conditions under which the growth rate of the variables of interest can be defined as functions of the ex ante reduction and iii) examine whether there exists a specific source of heterogeneity in the ex ante reduction. To keep notations as simple as possible, we omit time and individual indices.

Notations, labor demand and supply

We consider a firm with a technology of production that incorporates L various types of workers N_j and capital K. We assume constant elasticities of substitution between the various factors and constant returns to scale.

We suppose that the demand addressed to the firm has a constant price elasticity $e_d = \frac{PQ}{\delta}$ where P is the price and δ a scale parameter.

$$\epsilon = \frac{\sum_{j=1}^{L} \pi_{N,j}}{G}$$

$$\epsilon = \frac{L^{1/N}}{G}$$

where ϵ is the vector of employment, costs and gross wages of the L types of workers and $\pi_{N,j}$ the diagonal matrix of their cost shares relative to total cost (capital cost included) ($\sum_{j=1}^{L} \pi_{N,j} + \pi_K = 1$). Costs and gross wages are linked by the relationship: $c_{N,j} = (1 + T(w_j))w_j$, where $T(\cdot)$ is the payroll tax rate function. It is that function which has been changed by the introduction of payroll tax subsidies for low wage workers.

The firm level demand of workers can be written as:

$$log N = \sum_{N} \log c_N + \sum_{K} \log c_K + u$$

where $\sigma_{N,j} = (1)_{j=1,...,L}$ and $\sigma_{N,j} = (1)_{j=1,...,L}$ represent the matrices of Allen substitution elasticities reduced by the price elasticity of demand and u the vector of perturbations that include technology and demand shocks.

The supply of workers addressed to each firm is defined as:

$$log W = R \log w + v$$

where R is the diagonal matrix of the elasticities of supply to gross wages : $P = \text{Diag}(\rho_{N,1},...,\rho_{N,L})$ and $v = (v_1,...,v_L)$ the vector of the firm specific component of wages.

Distribution of wages and the ex ante reduction of labor cost

Assuming first that wages at the firm level balance demand and supply for each type of employee within the firm and second that the cost of capital is held constant, we have:

$$log w = \left[R - \sum_{N} \pi_{N} \right]^{-1} \left[\sum_{N} \log(1 + T(w)) \cdot \log c_K + u - v \right]$$

where $\log(1 + T(w)) = (\log(1 + T(w_1)),...,\log(1 + T(w_L)))$.

The distribution of gross wages inside firms is a function of structural parameters (elasticities of substitution, price elasticity of demand and wages elasticities of supply), cost- shares of inputs ,
payroll tax rates and unobserved components affecting both the demand and supply labor equations.9

Using the wage equations above, we can derive in each firm the expression of wages by categories of workers at date 1994 with tax rules of 1994 and 1997. This permits to deduce the firm’s ex ante labor cost reduction \(t \), which is simply equal to the sum of the \(L \) workers-level ex ante subsidies. Indeed, we have \(t = t_{N_1} + \ldots + t_{N_L} \), with \(t_{N_j} \) the ex ante labor cost reduction for workers of type \(j \) defined as \(t_{N_j} = \tilde{\pi}_j \left[\log (1 + T_{97} (w_{j,94})) - \log (1 + T_{94} (w_{j,94})) \right] \), \(\tilde{\pi}_j \) being the share in labor costs (capital cost excluded). The firm’s ex ante labor cost reduction can thus be expressed as:

\[
t = t\left(\sum_i R_i, \pi_{N,94}, \pi_{K,94}, \pi_{K,94}, c_{K,94}, u_{94}, v_{94} \right)
\]

Ex post variation in gross wages and employment

The growth rate of the interest variables (mainly employment and wages of the various types of workers) over the period 1994-1997 are obtained by differentiating the wage and labor equations above. Assuming the labor cost- shares of the different categories of workers (\(\tilde{\pi}_{N_j} \)) are held constant and denoting \(\tilde{\pi}_N = \text{Diag}\{\tilde{\pi}_{N_1}, \ldots, \tilde{\pi}_{N_L}\} \) the vector of these shares and \(t_N = (t_{N_1}, \ldots, t_{N_L})' \) the vector of the ex ante labor cost reductions associated to the various types of workers, the growth rate of wages can be written as:

\[
\left[R - \sum_{i=N,N} \pi_N \right] \Delta \log w = \left[(1 - \pi_K) \sum_{i=N,N} \pi_N \Delta \log (1 + T(\log w)) + \sum_{i=N,K} \pi_K \Delta \log c_K + \Delta u - \Delta v \right]
\]

The term \(\Delta \log (1 + T(\log w)) \) can be split into two terms: the variation only due to the change in the tax rule (holding gross wages constant) and the variation due to the adjustment of gross wages between 1994 and 1997 (the tax rule being that of 1997):

\[
\tilde{\pi}_N \Delta \log (1 + T(\log w)) = \tilde{\pi}_N \left[\log (1 + T_{97} (w_{97})) - \log (1 + T_{94} (w_{94})) \right]
\]

\[
\hspace{1cm} = \tilde{\pi}_N \left[\log (1 + T_{97} (w_{94})) - \log (1 + T_{94} (w_{94})) \right]
\]

\[
\hspace{2cm} + \tilde{\pi}_N \left[\log (1 + T_{97} (w_{97})) - \log (1 + T_{97} (w_{94})) \right]
\]

The first term \(t_N = \tilde{\pi}_N \left[\log (1 + T_{97} (w_{94})) - \log (1 + T_{94} (w_{94})) \right] \) is simply the vector of the ex ante reductions corresponding to the different types of workers. Assuming then that the second term is as a function of the growth rate of gross wages i.e. \(\tilde{\pi}_N \left[\log (1 + T_{97} (w_{97})) - \log (1 + T_{97} (w_{94})) \right] = \tilde{\pi}_N \Delta \log (w) \), we have:

\[
\Delta \log w = \left[R - \sum_{i=N,N} \pi_N (1 - A) \right] \left[(1 - \pi_K) \sum_{i=N,N} t_N + \sum_{i=N,K} \pi_K \Delta \log c_K + \Delta u - \Delta v \right]
\]

9 The share of each factor in total costs enters this equation. These variables could be expressed as a function of the true underlying heterogeneity sources of the model (the structural parameters and the firm specific component of heterogeneity in productivity and demand and wages). However this is not important for our analysis. The crucial point in this equation is that given the shares, the distribution of wages inside the firm is a function of the firm specific components \(u \) and \(v \).
To define the changes in wages as functions of the ex ante labor cost reduction, we have to assume some restrictions on the elasticities of substitution between the \(\bar{T} \) categories of workers concerned by payroll tax subsidies:

\[
\sigma_{N_j,N_k} = \sigma_{N_j,N_l} = \sigma_{N_j} \quad \forall k, \forall l \leq T \text{ et } \forall j = 1, \ldots, L
\]

This is the case if workers concerned by tax subsidies are perfect complement (sufficient condition)\(^{11}\). Under this assumption, the growth rates of gross wages and employment can be expressed in each firm as:

\[
\Delta \log w = \left[R - \sum_{N,N} \pi_N (1 - A) \right]^{-1} \left[\zeta_N (1 - \pi_k) t + \sum_{N,K} \pi_k \Delta \log c_k + \Delta u - \Delta v \right]
\]

\[
\Delta \log N = R \Delta \log w + \Delta v
\]

where \(\zeta_N \) is the \((L \times 1) \) vector equal to \(\zeta_N = [\sigma_{N_j} - \varepsilon]_{j=1, \ldots, L} \). The interest variables (employment, gross wages, capital, value added, ...) can therefore be written as:

\[
\Delta y = \Delta y(\Sigma, R, A, \pi_N, \pi_K, c_K, \Delta u, \Delta v, t)
\]

Comparing factors affecting both the ex ante labor cost reduction and the interest variables, we can note that unobserved firm level components (technology and demand for the demand side and firm level wage component on the supply side) are specific to the ex ante reduction. The variables of interest are indeed taken in evolution and thus are not dependant of these specific effects. Common factors include structural parameters, shares of inputs in total cost, capital cost and demand and technology shocks. Finally, equations can be rewritten as:

\[
\Delta y = \Delta y(\Phi, v, t) \text{ and } t = t(\Phi, \omega)
\]

where \(\Phi \) represent common factors, \(v \) and \(\omega \) demand and productivity shocks affecting respectively the variables of interest and the ex ante labor cost reduction. Note that firm specific components enter \(\omega \) but not \(v \).\(^{12}\)

\(^{10}\)These restrictions imply \(\sigma_{N_i,N_k} = \sigma \quad \forall 1, k \leq T \) et \(\sigma_{N_i,N_l} = \sigma_{N_i} \quad \forall 1 > T \) and \(k \leq T \) where \(1 \in \{1, \ldots, T\} \) is the set of worker types whose wages is below the upper threshold 1.33 times the minimum wages of the change in the tax rule (which is firm specific).

\(^{11}\)Given the definition of Allen Uzawa substitution elasticities \(\sigma_{i,j} = CC_{i,j} / C_{i,j} \) where \(C \) is the cost function, it is straightforward to see that the condition is satisfied as long as the cost function can be written as \(C_{i,j} = C(c_{N_i} + \cdots + c_{N_l}) \).

\(^{12}\)If supply and demand shocks are modeled as: \(u_k = u_i^{(1)} + u_i^{(2)} t + u_i^{(3)} \) et \(v_k = v_i^{(1)} + v_i^{(2)} t + v_i^{(3)} \), then \(u_i^{(1)} \) and \(v_i^{(1)} \) does not enter \(\Delta u_k \) and \(\Delta v_k \) but \(u_k \) and \(v_k \).
Appendix C : Elimination of outliers and data set construction

The data set construction includes several steps. We first build up a balanced sample of firms from the BRN source, selecting firms in Manufacturing and Non Manufacturing sectors (except the energy, agricultural and financial sectors) present in all five years 1993-1997. We also keep information from the date of firm’s first appearance in the data source BRN to compute changes of some variables used as controls.

We then remove from the sample firms for which one of our main variables had erroneous values:
- firms with non positive values for value added, number of employees, capital and wage bill,
- firms for which the annual growth rates of the value added, capital and employment are less than the 1st percentiles of these distributions or more than the 99th percentiles in the sector (2-digit).
- firms which are extreme outliers in the distributions of the logarithms and the first differences of logarithms of labor productivity, capital labor ratio, labor and capital costs.

These restrictions yield to loose 50% of the firms in Manufacturing and 60% in Non Manufacturing. This strong rate of elimination is mainly due to “clean-up” on the capital cost.

We then merge the data from BRN with DADS, selecting only firms in both data sources for the years 1993 to 1997. The merging eliminate 9% of the remaining firms in both sectors. We then realize a last clean-up on our variables of interest and control variables, which induce an additional elimination of 14% of firms. The final sample is made of about 30% of the 295,118 firms, available in the BRN initial balanced sample. It has 87,720 firms, in which 34,371 firms (39%) belong to Manufacturing and 53,349 (61%) to Non Manufacturing. Those firms employ 3,772,941 individuals, 2,053,777 (54%) in Manufacturing and 1,719,164 (46%) in Non Manufacturing.

Despite an important elimination of observations, our analysis sample provides an overall growth rate of employment which is close to that of the national accounts (see table below). Both changes indicate a fall of employment in Industry and a rise in Services. Nevertheless, our sample gives a weight too much important to Industry and not enough to Services, as compared to national accounts. Moreover, it underestimates the decrease of employment in Industry (-1,2% over the period 1994-1997 against –2,6% in national accounts) and the increase in Services (+2,5% against +5,7%). For the building sector, the growth rates of employment from both sources are however quite similar (-5,3% against –5,6%). Such differences are frequent, when comparing data from firms and national accounts.
Appendix D: Semi Parametric Quasi Maximum Likelihood estimation of the score function (manufacturing, 32769 observations and non manufacturing, 49614 observations).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Manufacturing</th>
<th>Non Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm level variables (general)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value added (log)</td>
<td>-0.311 (0.011)</td>
<td>-0.397 (0.010)</td>
</tr>
<tr>
<td>Labor productivity (log)</td>
<td>-0.940 (0.011)</td>
<td>-0.651 (0.014)</td>
</tr>
<tr>
<td>Capital labor ratio (log)</td>
<td>-0.081 (0.026)</td>
<td>-0.293 (0.019)</td>
</tr>
<tr>
<td>Operating income capital ratio</td>
<td>-0.070 (0.015)</td>
<td>-0.099 (0.012)</td>
</tr>
<tr>
<td>Firm mark-up</td>
<td>0.485 (0.015)</td>
<td>-0.604 (0.012)</td>
</tr>
<tr>
<td>Share of labor cost</td>
<td>-0.536 (0.023)</td>
<td>-0.615 (0.016)</td>
</tr>
<tr>
<td>Firm variables in difference (general)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value added (growth rate)</td>
<td>-0.064 (0.011)</td>
<td>-0.046 (0.008)</td>
</tr>
<tr>
<td>Total factor productivity (growth rate)</td>
<td>0.223 (0.013)</td>
<td>0.117 (0.011)</td>
</tr>
<tr>
<td>Capital labor ratio (growth rate)</td>
<td>0.043 (0.012)</td>
<td>0.061 (0.010)</td>
</tr>
<tr>
<td>Operating income capital ratio (difference)</td>
<td>-0.000 (0.012)</td>
<td>0.037 (0.008)</td>
</tr>
<tr>
<td>Firm mark-up (difference)</td>
<td>-0.079 (0.012)</td>
<td>0.059 (0.011)</td>
</tr>
<tr>
<td>Share of labor cost (difference)</td>
<td>0.037 (0.014)</td>
<td>0.059 (0.011)</td>
</tr>
<tr>
<td>Financial variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of capital (log)</td>
<td>0.132 (0.013)</td>
<td>-0.013 (0.011)</td>
</tr>
<tr>
<td>Cost of capital (growth rate)</td>
<td>-0.016 (0.011)</td>
<td>-0.019 (0.010)</td>
</tr>
<tr>
<td>Debt ratio</td>
<td>0.049 (0.008)</td>
<td>0.017 (0.006)</td>
</tr>
<tr>
<td>Ex ante variation in the cost of capital</td>
<td>0.167 (0.011)</td>
<td>0.077 (0.010)</td>
</tr>
<tr>
<td>Work force heterogeneity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of young unskilled men</td>
<td>0.068 (0.009)</td>
<td>0.075 (0.007)</td>
</tr>
<tr>
<td>Share of prime age unskilled men</td>
<td>-0.052 (0.009)</td>
<td>0.069 (0.008)</td>
</tr>
<tr>
<td>Share of old unskilled men</td>
<td>-0.015 (0.008)</td>
<td>0.028 (0.008)</td>
</tr>
<tr>
<td>Share of young skilled men</td>
<td>0.054 (0.010)</td>
<td>0.057 (0.007)</td>
</tr>
<tr>
<td>Share of prime age skilled men</td>
<td>0.006 (0.009)</td>
<td>0.004 (0.008)</td>
</tr>
<tr>
<td>Share of old skilled men</td>
<td>-0.018 (0.011)</td>
<td>0.025 (0.007)</td>
</tr>
<tr>
<td>Share of young highly skilled men</td>
<td>-0.234 (0.011)</td>
<td>-0.160 (0.009)</td>
</tr>
<tr>
<td>Share of prime age highly skilled men</td>
<td>-0.130 (0.009)</td>
<td>-0.102 (0.008)</td>
</tr>
<tr>
<td>Share of old highly skilled men</td>
<td>0.073 (0.011)</td>
<td>0.161 (0.007)</td>
</tr>
<tr>
<td>Share of young unskilled women</td>
<td>0.195 (0.010)</td>
<td>0.266 (0.009)</td>
</tr>
<tr>
<td>Share of prime age unskilled women</td>
<td>0.056 (0.010)</td>
<td>0.099 (0.007)</td>
</tr>
<tr>
<td>Share of young skilled women</td>
<td>0.059 (0.013)</td>
<td>0.069 (0.006)</td>
</tr>
<tr>
<td>Share of prime age skilled women</td>
<td>0.100 (0.009)</td>
<td>0.149 (0.008)</td>
</tr>
<tr>
<td>Share of old skilled women</td>
<td>0.022 (0.008)</td>
<td>0.051 (0.007)</td>
</tr>
<tr>
<td>Share of young highly skilled women</td>
<td>0.013 (0.008)</td>
<td>0.043 (0.006)</td>
</tr>
<tr>
<td>Share of prime age highly skilled women</td>
<td>-0.039 (0.011)</td>
<td>-0.007 (0.009)</td>
</tr>
<tr>
<td>Share of old highly skilled women</td>
<td>-0.022 (0.009)</td>
<td>-0.035 (0.008)</td>
</tr>
<tr>
<td>Sectoral variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average labor cost of unskilled worker (log two digit level)</td>
<td>0.092 (0.012)</td>
<td>-0.180 (0.009)</td>
</tr>
<tr>
<td>unskilled worker (growth rate two digit level)</td>
<td>-0.021 (0.012)</td>
<td>-0.028 (0.008)</td>
</tr>
<tr>
<td>Entry rate (three digit level)</td>
<td>-0.142 (0.010)</td>
<td>0.167 (0.005)</td>
</tr>
<tr>
<td>Exit rate (three digit level)</td>
<td>0.044 (0.009)</td>
<td>-0.042 (0.007)</td>
</tr>
<tr>
<td>Import rate (two digit level)</td>
<td>-0.325 (0.022)</td>
<td>0.579 (0.030)</td>
</tr>
<tr>
<td>Export rate (two digit level)</td>
<td>0.103 (0.020)</td>
<td>-0.726 (0.031)</td>
</tr>
</tbody>
</table>

Note: Also include sector dummy variables at the one digit level. Level variables are taken in 1994, variables in difference or growth rate are taken over the longest period available when at the firm level and over the period 1990-1994 for variables at the sectoral level. All variables have been centered and reduced. The coefficient of the intercept and one dummy sectoral variables have been constrained to equal there estimated values in the linear estimation of a the logistic transformation of the treatment variable $\tilde{t} = \log(t/(0.10 - t))$.

46
Appendix E1: Estimation of parameter $E(y(t) - y(0))$

Manufacturing

Non Manufacturing
Appendix E2: Estimation of parameter $E(\partial y(t) / \partial t)$

Manufacturing

Non Manufacturing
Appendix E3: Estimation of parameter $E(y(0)|t)$ and $E(y|t)$

Manufacturing

![Graph of Estimated Values for Manufacturing](image)

Non Manufacturing

![Graph of Estimated Values for Non Manufacturing](image)

Note: Obtained with series estimator with a degree of polynomial approximation of 3. The solid line are the estimated values. The dotted one are respectively the lower and upper bound at 5% obtained with 500 replication of the bootstrap. The upper solid line is the expectation of output given treatment. The lower solid line is the expectation of the counterfactual given treatment.
Appendix F : Common support

Figure Fa : Percentiles of the score distribution by class of treatment –manufacturing

Note : 20 classes of treatment, width 0.5% : [0.0, 0.5%], [0.5%, 1%], [1%, 1.5%], [1.5%, 2%], ...
Figure F2a: Percentiles of the score distribution by class of treatment – non manufacturing

Note: 20 classes of treatment, width 0.5%: [0,0.5%), [0.5%,1%), [1%,1.5%), [1.5%,2%), …